
Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique
option Recherche Opérationelle, Combinatoire et Optimisation

Self-stabilizing Leader Election in
Polynomial Steps ∗

Anaı̈s DURAND
June 25, 2014

Research project performed at VERIMAG

Under the supervision of:
Karine Altisen, VERIMAG

Stéphane Devismes, VERIMAG

Defended before a jury composed of:
Prof. Catherine Berrut

Dr. Noha Ibrahim
Prof. Zoltán Szigeti
Prof. Nadia Brauner

Prof. Jean-Claude Fernandez
Prof. Denis Trystram (Reviewer)

June 2014
∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)

funded by the French program Investissement d’avenir.

1

Abstract

In this report, we propose a silent self-stabilizing leader election algorithm for bidirec-
tional connected identified networks of arbitrary topology. This algorithm is written in the
locally shared memory model. It assumes the distributed unfair daemon, the most general
scheduling hypothesis of the model. Our algorithm requires no global knowledge on the
network (such as an upper bound on the diameter or the number of processes, for example).

We show that its stabilization time is in Θ(n3) steps in the worst case, where n is the
number of processes. Its memory requirement is asymptotically optimal, i.e., Θ(log n) bits
per processes. Its round complexity is of the same order of magnitude — i.e., Θ(n) rounds
— as the best existing algorithm [9] designed with similar settings (i.e., it does not use
global knowledge and is proven under the unfair daemon).

To the best of our knowledge, this is the first self-stabilizing leader election algorithm
for arbitrary identified networks that is proved to achieve a stabilization time polynomial in
steps. By contrast, we show that the previous best existing algorithm designed with similar
settings [9] stabilizes in a non polynomial number of steps in the worst case.

Keywords: Distributed algorithms, fault-tolerance, self-stabilization, leader election, unfair
daemon.

Résumé

Dans ce rapport, nous présentons un algorithme d’élection silencieux et auto-stabilisant
pour un réseau bidirectionnel et connecté de topologie quelconque. Cet algorithme utilise
le modèle à états. Il fonctionne sous un démon inéquitable qui est l’hypothèse d’ordonnan-
cement la plus faible de ce modèle. Notre algorithme ne nécessite a priori aucune connais-
sance globale sur le réseau (comme par exemple une borne supérieure sur le diamètre ou le
nombre de processus).

Nous montrons que cet algorithme stabilise en Θ(n3) pas de calcul dans le pire des cas,
où n est le nombre de processus. La mémoire nécessaire est asymptotiquement optimale,
i.e., Θ(log n) bits par processus. Sa complexité en rondes est du même ordre de grandeur –
i.e., Θ(n) rondes – que celle du meilleur algorithme existant [9] avec les mêmes hypothèses
(cet algorithme n’utilise aucune connaissance globale et est prouvé sous l’hypothse d’un
démon inéquitable).

A notre connaissance, il s’agit du premier algorithme auto-stabilisant d’élection pour
des réseaux identifiés quelconques prouvé comme ayant un temps de stabilisation poly-
nomial en nombre de pas. Pour comparer, nous montrons que le temps de stabilisation du
meilleur algorithme (avant ce travail) utilisant les mêmes hypothèses [9] est non polynomial
en nombre de pas.

Mots-clés : Algorithmes répartis, tolérance aux pannes, auto-stabilisation, élection, démon
inéquitable.

Contents

1 Introduction 5

2 Computational model 7
2.1 Distributed systems . 7
2.2 Locally shared memory model . 7
2.3 Rounds . 8
2.4 Self-Stabilization . 8
2.5 Self-Stabilizing Leader Election . 8

3 Algorithm LE 9
3.1 Non Self-Stabilizing Leader Election . 9
3.2 Fake IDs . 10
3.3 Cleaning Abnormal Trees . 11

4 Correctness and Complexity Analysis 17
4.1 Some definitions . 17
4.2 Correctness . 18
4.3 Complexity Analysis . 26

5 Step Complexity of Algorithm DLV 37
5.1 Overview of DLV . 37
5.2 Example in Ω(n4) steps . 40
5.3 Generalization to an example in Ω(nα+1) steps 41

6 Conclusion 47

Bibliography 49

A E4 step by step 51

B Experimentation 55
B.1 Graph models . 55
B.2 Experimentation Protocol . 55
B.3 Results . 55

1

Introduction

In distributed computing, the leader election problem consists in distinguishing one process,
so-called the leader, among the others. We consider here identified networks. So, as it is usually
done, we augment the problem by requiring all processes to eventually know the identifier of
the leader. The leader election is fundamental as it is a basic component to solve many other
important problems, e.g., consensus, spanning tree constructions, implementing broadcasting
and convergecasting methods, etc.

Self-stabilization [10, 11] is a versatile technique to withstand any transient fault in a dis-
tributed system: a self-stabilizing algorithm is able to recover, i.e., reach a legitimate configu-
ration, in finite time, regardless the arbitrary initial configuration of the system, and therefore
also after the occurrence of transient faults. Thus, self-stabilization makes no hypotheses on the
nature or extent of transient faults that could hit the system, and recovers from the effects of
those faults in a unified manner. Such versatility comes at a price. After transient faults, there
is a finite period of time, called the stabilization phase, before the system returns to a legitimate
configuration. The stabilization time is then the worst case duration of the stabilization phase,
i.e., the maximum time to reach a legitimate configuration starting from an arbitrary one. Notice
that efficiency of self-stabilizing algorithms is mainly evaluated according to their stabilization
time and memory requirement.

We consider the deterministic 1 asynchronous silent self-stabilizing leader election problem
in bidirectional, connected, and identified networks of arbitrary topology. We investigate so-
lutions to this problem which are written in the locally shared memory model introduced by
Dijkstra [10]. In this model, the distributed unfair daemon is known as the weakest scheduling
assumption. Now, proving the self-stabilization of a given algorithm under such an assumption
implies that the stabilization time is finite in terms of atomic steps. However, despite some
solutions assuming all these settings (in particular the unfairness assumption) are available in
the literature [7, 8, 9], none of them is proven to achieve a polynomial upper bound in steps on
its stabilization time. Rather, the time complexities of all these solutions are analyzed in terms
of rounds only.

Related Work.

In [12], Dolev et al showed that the silent self-stabilizing leader election requires Ω(log n)
bits per process, where n is the number of processes. Self-stabilizing leader election algorithms
for arbitrary connected identified networks have been proposed in the message-passing model
[1, 4, 5]. First, the algorithm of Afek and Bremler [1] stabilizes in O(n) rounds using Θ(log n)
bits per process. But, it assumes that the link-capacity is bounded by a value B, known by all
processes. Two solutions that stabilize inO(D) rounds, whereD is the diameter of the network,
have been proposed in [4, 5]. However, both solutions assume that processes know some upper
bound D on the diameter D; and have a memory requirement in Θ(logD log n) bits.

Several solutions are also given in the shared memory model [13, 3, 7, 8, 9, 15]. The
algorithm proposed by Dolev and Herman [13] is not silent, works under a fair daemon, and
assume that all processes know a bound N on the number of processes. This solution stabilizes

1. We only consider here deterministic algorithms.

6 Chapter 1. Introduction

in O(D) rounds using Θ(N logN) bits per process. The algorithm of Arora and Gouda [3]
works under a weakly fair daemon and assume the knowledge of some bound N on the number
of processes. This solution stabilizes in O(N) rounds using Θ(logN) bits per process.

Datta et al [7] propose the first self-stabilizing leader election algorithm (for arbitrary con-
nected identified networks) proven under the distributed unfair daemon. This algorithm stabi-
lizes in O(n) rounds. However, the space complexity of this algorithm is unbounded. (More
precisely, the algorithm requires each process to maintain an unbounded integer in its local
memory.)

Solutions in [8, 9, 15] have a memory requirement which is asymptotically optimal (i.e.
in Θ(log n)). The algorithm proposed by Kravchik and Kutten [15] assumes a synchronous
daemon and the stabilization time of this latter is in O(D) rounds. The two solutions proposed
by Datta et al in [8, 9] assume a distributed unfair daemon and have a stabilization time in O(n)
rounds. However, despite these two algorithms stabilize within a finite number of step (indeed,
they are proved assuming an unfair daemon), no step complexity analysis is proposed. Finally,
note that the algorithm proposed in [8] assumes that each process has a bit of memory which
cannot be arbitrarily corrupted.

Contribution.

We propose a silent self-stabilizing leader election algorithm for arbitrary connected and
identified networks. Our solution is written in the locally shared memory model assuming
a distributed unfair daemon, the weakest scheduling assumption. Our algorithm assumes no
knowledge of any global parameter (e.g., an upper bound on D or n) of network. Like previ-
ous solutions of the literature [8, 9], it is asymptotically optimal in space (i.e., it works using
Θ(log n) bits per process), and it stabilizes in Θ(n) rounds in the worst case. Yet, contrary to
those solutions, we show that our algorithm has a stabilization time in Θ(n3) steps in the worst
case.

For fair comparison, we have also studied the step complexity of the algorithm given in [9],
noted here DLV . This latter is the closest to ours in terms of performance. We show that its
stabilization time is not polynomial, i.e., there is no constant α such that the stabilization time
of DLV is in O(nα) steps. More precisely, we show that fixing α to any constant greater than
or equal to 4, for every β ≥ 2, there exists a network of n = 2α−1 × β processes in which there
exists a possible execution that stabilizes in Ω(nα) steps.

Roadmap.

The next chapter is dedicated to computational model and basic definitions. In Chapter 3, we
propose our self-stabilizing leader election algorithm. We prove its correctness in Chapter 4. In
the same chapter, we also study its stabilization time in both steps and rounds. We show that the
stabilization time of the self-stabilizing leader election algorithm given in [9] is not polynomial
in steps in Chapter 5. We conclude in Chapter 6.

2

Computational model

2.1 Distributed systems
We consider distributed systems made of n processes. Each process can communicate with

a subset of other processes, called its neighbors. We denote by Np the set of neighbors of
process p. Communications are assumed to be bidirectional, i.e. q ∈ Np if and only if p ∈ Nq.
Hence, the topology of the system can be represented as a simple undirected connected graph
G = (V,E), where V is the set of processes and E is a set of edges representing (direct)
communication relations. We assume that each process has a unique ID, a natural integer. IDs
are stored using a constant number of bits, b. As commonly done in the literature, we assume
that b = Θ(log n). Moreover, by an abuse of notation, we identify a process with its ID,
whenever convenient. We will also denote by ` the process of minimum ID. (So, the minimum
ID will be also denoted by `.)

2.2 Locally shared memory model
We consider the locally shared memory model, in which the processes communicate using

a finite number of locally shared registers, called variables. Each process can read its own vari-
ables and those of its neighbors, but can write only to its own variables. The state of a process
is the vector of the values of all its variables. A configuration γ of the system is the vector of
the states of all processes. We denote by γ(p) the state of the process p in the configuration γ.
We denote by C the set of all possible configurations.

A distributed algorithm consists of one program per process. The program of a process p is
a finite set of actions of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉
The labels are used to identify actions. The guard of an action in the program of process p is a
Boolean expression involving the variables of p and its neighbors. If the guard of some action
evaluates to true, then the action is said to be enabled at p. By extension, if at least one action
is enabled at p, p is said to be enabled. We denote by Enabled(γ) the set of processes enabled
in configuration γ. The statement of an action is a sequence of assignments on the variables of
p. An action can be executed only when it is enabled. In this case, the execution of the action
consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon. In
a configuration γ, if Enabled(γ) 6= ∅, then the daemon selects a non empty subset S of
Enabled(γ) to perform an atomic step: ∀p ∈ S, p atomically executes one of its actions en-
abled in γ, leading the system to a new configuration γ′. We denote by 7→ the relation between
configurations such that γ 7→ γ′ if and only if γ′ can be reached from γ in one atomic step. An
execution is then a maximal sequence of configurations γ0, γ1, . . . such that γi−1 7→ γi,∀i > 0.
The term “maximal” means that the execution is either infinite, or ends at a terminal configu-
ration γ in which Enabled(γ) is empty.

As we saw previously, each step from a configuration to another is driven by a daemon. In
this paper, the daemon is supposed to be distributed and unfair. “Distributed” means that while
the configuration is not terminal, the daemon should select at least one enabled process, maybe

8 Chapter 2. Computational model

more. “Unfair” means that there is no fairness constraint, i.e., the daemon might never permit
an enabled process to execute, unless it is the only enabled process.

2.3 Rounds
To measure the time complexity of an algorithm, we also use the notion of round. This

latter allows to highlight the execution time according to the speed of the slowest process. If
a process p is enabled in a configuration γi but not enabled in the next configuration γi+1 and
does not execute any action between γi and γi+1, we said that p is neutralized during the step
γi 7→ γi+1. Neutralization of p is caused by the following situation: at least one neighbor of p
changes its state between γi and γi+1, and this change makes the guards of all actions of p false.
The first round of an execution e, noted e′, is the minimal prefix of e in which every process
that is enabled in the initial configuration either executes an action or becomes neutralized. Let
e′′ be the suffix of e starting from the last configuration of e′. The second round of e is the first
round of e′′, and so forth.

2.4 Self-Stabilization
Let A be a distributed algorithm. Let E be the set of all possible executions of A. A

specification SP is a predicate over E .
A is self-stabilizing for SP if and only if there exists a non-empty subset of configurations

L ⊆ C, called legitimate configurations, such that:
– Closure: ∀e ∈ E , for each step γi 7→ γi+1 ∈ e, γi ∈ L ⇒ γi+1 ∈ L.
– Convergence: ∀e ∈ E ,∃γ ∈ e such that γ ∈ L.
– Correction: ∀e ∈ E such that e starts in a legitimate configuration γ ∈ L, e satisfies SP .
Every configuration that is not legitimate is called illegitimate. The stabilization time is

the maximum time (in steps or rounds) to reach a legitimate configuration starting from any
configuration.

2.5 Self-Stabilizing Leader Election
We define SPLE(e) the specification of the leader election problem. Let Leader : V 7→ N

be a function defined on the state of any process p ∈ V in the current configuration that returns
the ID of the leader appointed by p. SPLE(e) is true if and only if:

1. For all configuration γ ∈ e, ∀p, q ∈ V, Leader(p) = Leader(q) and Leader(p) is the ID
of some process in V .

2. For all step γi 7→ γi+1 ∈ e, ∀p ∈ V , Leader(p) has the same value in γi and γi+1.

A is silent if and only if every execution is finite [12]. Let γ be a terminal configuration.
The set of all possible executions starting from γ is the singleton {γ}. So, ifA is self-stabilizing
and silent, γ must be legitimate. Thus, to prove that a leader election algorithm is both self-
stabilizing and silent, it is necessary and sufficient to show that: (1) in every terminal configura-
tion γ, ∀p, q ∈ V , Leader(p) = Leader(q) and Leader(p) is the ID of some process; (2) every
execution is finite.

3

Algorithm LE

In this chapter, we present a silent and self-stabilizing leader election algorithm, called LE .
Its formal code is given in Algorithm 1. Starting from an arbitrary configuration, LE converges
to a terminal configuration, where the process of minimum ID, `, is elected. More precisely, in
the terminal configuration, every process p knows the identifier of ` thanks to its local variable
p.idR; moreover a spanning tree rooted at ` is defined using two variables per process: par and
level. First, `.par = ` and `.level = 0. Then, for every process p 6= `, p.par points to the
parent of p in the tree and p.level is the level of p in the tree.

We present a simple algorithm for the leader election problem in Section 3.1. We show why
this algorithm is not self-stabilizing in Section 3.2. Then, we explain in Section 3.3 how to
modify this simple algorithm to make it self-stabilizing.

3.1 Non Self-Stabilizing Leader Election
We first consider a simplified version ofLE . Starting from a predefined initial configuration,

it elects ` in all idR variables and builds a spanning tree rooted at `.
Initially, every process p declares itself as leader: p.idR = p, p.par = p, and p.level = 0.

So, p satisfies the two following predicates:

SelfRoot(p) ≡ (p.par = p) and SelfRootOk′(p) ≡ (p.level = 0) ∧ (p.idR = p)

Note that, in the sequel, we say that p is a self root when SelfRoot(p) holds.
From such an initial configuration, our non self-stabilizing algorithm consists in the follow-

ing single action:
J-Action′ :: ∃q ∈ Np, (q.idR < p.idR) → p.par = min�{q ∈ Np};

p.idR = p.par.idR;
p.level = p.par.level + 1;

where ∀x, y ∈ V, x � y ⇔ (x.idR ≤ y.idR) ∧ [(x.idR = y.idR)⇒ (x < y)]

Informally, when p discovers that p.idR is not equal to the minimum identifier, it updates
its variables accordingly: let q be the neighbor of p having idR minimal. Then, p selects q as
new parent (p.par = q and p.level = p.par.level + 1) and sets p.idR to the value of q.idR.
If there are several neighbors having idR minimal, we break ties using the identifiers of those
neighbors.

Hence, the identifier of ` is propagated, from neighbors to neighbors, into the idR variables
and the system reaches a terminal configuration in O(D) rounds. Figure 1 shows an example of
such an execution.

Notice first that for every process p, p.idR is always less than or equal to its own identifier.
Indeed, p.idR is initialized to p and decreases each time p executes J-Action′. Hence, p.idR =
p while p is a self root and after p executes J-Action′ for the first time, p.idR is smaller than its
ID forever.

Second, even in this simplified context, for each two neighbors p and q such that q is the
parent of p, it may happens that p.idR is greater than q.idR—an example is shown in Figure 1c,
where p = 6 and q = 3. This is due to the fact that p joins the tree of q but meanwhile q
joins another tree and this change is not yet propagated to p. Similarly, when p.idR 6= q.idR,

10 Chapter 3. Algorithm LE

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈5, 0〉

〈7, 0〉

〈6, 0〉

〈2, 0〉

〈4, 0〉

(a) Initial configuration. SelfRoot(p) ∧
SelfRootOk′(p) holds for every process p.

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈2, 0〉

〈2, 1〉

(b) 4, 5, 6, and 7 have executed J-Action′. Note
that J-Action′ was not enabled at 2 because it is
a local minimum.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈1, 2〉

〈1, 2〉

(c) 2, 3, and 4 have executed J-Action′. 3 joins
the tree rooted at 1. However, the new value of
3.idR is not yet propagated to its child 6.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

(d) 6 has executed J-Action′. The configuration
is now terminal, ` = 1 is elected, and a tree rooted
at ` is available.

Figure 1: Example of execution of the non self-stabilizing algorithm. Process identifiers are
given inside the nodes. 〈x, y〉 means idR = x and level = y. Arrows represent par pointers.
The absence of arrow means that the process is a self root.

p.level may be different from q.level + 1. According to those remarks, we can deduce that
when p.par = q with q 6= p, we have the following relation between p and q:

GoodIdR(p, q) ≡ (p.idR ≥ q.idR) ∧ (p.idR < p)
GoodLevel(p, q) ≡ (p.idR = q.idR)⇒ (p.level = q.level + 1)

3.2 Fake IDs
This previous algorithm is not self-stabilizing. Indeed, in a self-stabilization context, the

execution may start in an arbitrary configuration. In particular, idR variables can be initialized
to arbitrary natural integer values, even values that are actually not IDs of (existing) processes.
We call such values fake IDs.

The existence of fake IDs may lead the system to an illegitimate terminal configuration.
Refer to the example of execution given in Figure 2: starting from Configuration 2a, if processes
3 and 4 move, the system reaches the terminal configuration given in 2b, where there are two
trees and the idR variables elect the fake ID 1.

2 3 4 5
〈1, 0〉 〈3, 0〉 〈4, 0〉 〈1, 0〉

(a) Illegitimate initial configuration, where 2 and
5 have fake idR.

2 3 4 5
〈1, 0〉 〈1, 1〉 〈1, 1〉 〈1, 0〉

(b) 3 and 4 executed J-Action′. The configuration
is now terminal.

Figure 2: Execution that does not converge to a legitimate configuration.

3.3. Cleaning Abnormal Trees 11

2 3 4 5
〈2, 0〉 〈1, 1〉 〈1, 1〉 〈5, 0〉

Figure 3: One step after Figure 2b, 2 and 5 have reset.

In this example, 2 and 5 can detect the problem. Indeed, predicate SelfRootOk′ is violated
by both 2 and 5. One may believe that it is sufficient to reset the local state of 2 and 5 to
p.idR = p, p.par = p and p.level = 0. But, as shown on Figure 3 after their reset, there are
still some errors. Again, 3 and 4 can detect the problem. Indeed, even if they are not self roots,
predicate GoodIdR(p, p.par)∧GoodLevel(p, p.par) is violated by both 3 and 4. So we define
the following action:

R-Action′ ::
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) → p.par = p;

∧¬(GoodIdR(p, p.par) ∧GoodLevel(p, p.par))
)

p.idR = p;
p.level = 0;

Unfortunately, this may lead to an execution that never converges, as shown in Figure 4.
Indeed, if a process resets, it becomes a self root but this does not erase the fake ID in the rest
of its subtree. Then, another process can join the tree and adopt the fake ID which will be
further propagated, and so on. In the example, a process resets while another joins its tree at
lower level, and this leads to endless erroneous behavior, since we do not want to assume any
maximal value for level (such an assumption would otherwise imply the knowledge of some
upper bound on n). Therefore, the whole tree must be reset, instead of its root only. To that
goal, we first froze the “abnormal” tree in order to forbid any process to join it, then the tree is
reset top-down. The cleaning mechanism is detailed in the next section.

3.3 Cleaning Abnormal Trees
To introduce the trees, we define what is a “good relation” between a parent and its children.

Namely, the predicate KinshipOk′(p, q) models that a process p is a real child of its parent
q = p.par. This predicate holds if and only if GoodLevel(p, q) and GoodIdR(p, q) are true.
This relation defines a spanning forest: a tree is a maximal set of processes connected by par
pointers and satisfying KinshipOk′ relation. A process p is a root of such a tree whenever
SelfRoot(p) holds or KinshipOk′(p, p.par) is false. When SelfRoot(p) ∧ SelfRootOk′(p)
is true, p is a normal root just as in the non self-stabilizing case (see 3.1). In other cases, there
is an error and p is said to be an abnormal root:

AbRoot′(p) ≡
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) ∧ ¬KinshipOk′(p, p.par)

)
These are the two possible errors identified in the Section 3.2. A tree is called an abnormal tree
when its root is abnormal.

We now detail the different predicates and actions of Algorithm 1.

3.3.1 Variable status.
Abnormal trees need to be frozen before to be cleaned in order to prevent them from growing

endlessly (see 3.2). This mechanism is achieved using an additional variable, status, that is
used as follows. If a process is clean (i.e., not involved into any freezing operation), then its
status isC. Otherwise, it has statusEB orEF and no neighbor can select it as its parent. These
two latter states are actually used to perform a “Propagation of Information with Feedback”

12 Chapter 3. Algorithm LE

Algorithm 1 Algorithm LE for every process p
Variables
p.idR ∈ N, p.par ∈ Np ∪ {p}, p.level ∈ N, p.status ∈ {C,EB,EF}

Macros
Childrenp ≡ {q ∈ Np | q.par = p}
RealChildrenp ≡ {q ∈ Childrenp | KinshipOk(q, p)}
p � q ≡ (p.idR ≤ q.idR) ∧ [(p.idR = q.idR)⇒ (p ≤ q)]
Minp ≡ min� {q ∈ Np | q.status = C}

Predicates
SelfRoot(p) ≡ p.par = p
SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idR = p) ∧ (p.status = C)
GoodIdR(s, f) ≡ (s.idR ≥ f.idR) ∧ (s.idR < s)
GoodLevel(s, f) ≡ (s.idR = f.idR)⇒ (s.level = f.level + 1)
GoodStatus(s, f) ≡ [(s.status = EB)⇒ (f.status = EB)]

∨[(s.status = EF)⇒ (f.status 6= C)]
∨[(s.status = C)⇒ (f.status 6= EF)]

KinshipOk(s, f) ≡ GoodIdR(s, f) ∧GoodLevel(s, f) ∧GoodStatus(s, f)
AbRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)]

∨[¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)]
Allowed(p) ≡ ∀q ∈ Childrenp, (¬KinshipOk(q, p)⇒ q.status 6= C)

Guards
EBroadcast(p) ≡ (p.status = C) ∧ [AbRoot(p) ∨ (p.par.status = EB)]
EFeedback(p) ≡ (p.status = EB) ∧ (∀q ∈ RealChildrenp, q.status = EF)
Reset(p) ≡ (p.status = EF) ∧AbRoot(p) ∧Allowed(p)
Join(p) ≡ (p.status = C) ∧ [∃q ∈ Np, (q.idR < p.idR) ∧ (q.status = C)]

∧Allowed(p)

Actions
EB-action :: EBroadcast(p) → p.status = EB;
EF -action :: EFeedback(p) → p.status = EF ;
R-action :: Reset(p) → p.status = C; p.par = p;

p.idR = p; p.level = 0;
J-action :: Join(p) ∧ ¬EBroadcast(p) → p.par = Minp;

p.idR = p.par.idR;
p.level = p.par.level + 1;

3.3. Cleaning Abnormal Trees 13

3

5

2 6

4

〈1, 2〉

〈5, 0〉

〈2, 0〉 〈1, 4〉

〈1, 3〉

(a) Illegitimate initial configura-
tion.

3

5

2 6

4

〈3, 0〉

〈5, 0〉

〈1, 5〉 〈1, 4〉

〈1, 3〉

(b) 2 joins the tree. 3 leaves it.

3

5

2 6

4

〈3, 0〉

〈1, 6〉

〈1, 5〉 〈1, 4〉

〈4, 0〉

(c) 5 joins the tree. 4 leaves it.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈1, 5〉 〈6, 0〉

〈4, 0〉

(d) Both 3 and 6 move.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈2, 0〉 〈6, 0〉

〈1, 8〉

(e) 4 joins, 2 leaves.

3

5

2 6

4

〈1, 7〉

〈5, 0〉

〈2, 0〉 〈1, 9〉

〈1, 8〉

(f) Configuration similar to 4a

Figure 4: The first process of the chain of bold arrows violates the predicate SelfRootOk′ and
resets by executing R-Action′, while another process joins its tree. This cycle of resets and
joins might never terminate.

[6, 16] into the abnormal trees. Therefore, status EB means “Error Broadcast” and EF means
“Error Feedback”. From an abnormal root, the status EB is broadcast down in the tree. Then,
once the EB wave reaches a leaf, the leaf initiates a convergecast EF -wave. Once the EF -
wave reaches the abnormal root, the tree is considered to be dead, meaning that there is no
process of status C in the tree and no other process can join it. So, the tree can be safely reset
from the abnormal root toward the leaves.

Notice that the new variable status may also get arbitrary initialization. Thus, we enforce
previously introduced predicates as follows.

A self root must have status C, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = C)

To be a real child of q, p should have a status coherent with the one of q. This is expressed
with the predicate GoodStatus(p, q), which is used to enforce the KinshipOk(p, q) relation:

GoodStatus(p, q) ≡ [(p.status = EB)⇒ (q.status = EB)]

∨[(p.status = EF)⇒ (q.status 6= C)]

∨[(p.status = C)⇒ (q.status 6= EF)]

KinshipOk(p, q) ≡ KinshipOk′(p, q) ∧GoodStatus(p, q)

Precisely, when p has status C, its parent must have status C or EB (if the EB-wave is not
propagated yet to p). If p has status EB, its parent must be of status EB because p gets status
EB from its parent and its parent will change its status to EF only after p gets status EF .
Finally, if p has status EF , its parent can have status EB (if the EF -wave is not propagated yet
to its parent) or EF .

14 Chapter 3. Algorithm LE

4

9

〈3, 0〉

〈4, 1〉

(a) 4 and 9 are abnormal roots. If 4 executes
R-action before 9 executes EB-action, the kin-
ship relation between 4 and 9 becomes correct and
9 is no more an abnormal root. Then, EB-action
is no more enabled at 9.

6 3

4

9

〈2, 3〉 〈3, 0〉

〈3, 1〉

〈2, 5〉

(b) 9 is an abnormal root and Min4 is 6. If 4
executes J-action before 9 executes EB-action,
the kinship relation between 4 and 9 becomes cor-
rect and 9 is no more an abnormal root. Then,
EB-action is no more enabled at 9.

Figure 5: Example of situations where the parent of a process is locked.

3.3.2 Normal Execution.
Remark that, after all abnormal trees have been removed, all processes have status C and the

algorithm works as in the initial version. Notice that the guard of J-action has been enforced
so that only processes with status C and which are not abnormal root can execute it, and when
executing J-action, a process can only choose a neighbor of status C as parent. Moreover,
remark that the cleaning of all abnormal trees does not ensure that all fake IDs have been
removed. Rather, it guarantees the removal of all fake IDs smaller than `. This implies that (at
least) ` is a self root at the end of the cleaning and all other processes will elect ` within the next
D rounds.

3.3.3 Cleaning Abnormal Trees.
Figure 6 shows how an abnormal tree is cleaned. In the first phase (see Figure 6a), the

root broadcasts status EB down to its (abnormal) tree: all the processes in this tree execute
EB-action, switch to status EB and are consequently informed that they are in an abnormal
tree. The second phase starts when the EB-wave reaches a leaf. Then, a convergecast wave of
status EF is initiated thanks to action EF -action (see Figure 6b). The system is asynchronous,
hence all the processes along some branch can have status EF before the broadcast of the EB-
wave is done into another branch. In this case, the parent of these two branches waits that all
its children in the tree (processes in the set RealChildren) get status EF before executing
EF -action (Figure 6c). When the root gets status EF , all processes have status EF : the tree is
dead. Then (third phase), the root can reset (safely) to become a self root by executingR-action
(Figure 6e). Its former real children (of status EF) become themselves abnormal roots of dead
trees (Figure 6f) and reset, etc.

Finally, we used the predicateAllowed(p) to temporarily lock the parent of p in two particu-
lar situations — illustrated in Figure 5 — where p is enabled to switch its status from C to EB.
These locks impact neither the correctness nor the complexity of LE . Rather, they allow us to
simplify the proofs by ensuring that, once enabled, EB-action remains continuously enabled
until executed.

3.3. Cleaning Abnormal Trees 15

EB-action

C

6

2 8

〈1, 0〉

〈1, 1〉 〈1, 1〉

(a) When an abnormal root detects an error, it ex-
ecutes EB-action. The EB-wave is broadcast to
the leaves. Here, 6 is an abnormal root because it
is a self root and its idR is different from its ID
(1 6= 6).

EF -action

C
EB

(b) When the EB-wave reaches a leaf, it executes
EF -action. The EF -wave is propagated up to
the root.

C EF

EB

5

4

7

9

〈1, 4〉

〈1, 5〉

〈1, 5〉

〈1, 5〉

(c) It may happen that the EF -wave reaches a
node, here process 5, even though theEB-wave is
still broadcasting into some of its proper subtrees:
5 must wait that the status of 4 and 7 become EF
before executing EF -action.

EF -action

EF
EB

(d) EB-wave has been propagated in the other
branch. An EF -wave is initiated by the leaves.

R-action

EF

(e)EF -wave reaches the root. The root can safely
reset (R-action) because its tree is dead. The
cleaning wave is propagated down to the leaves.

R-action

EF EF

6

2 8

〈6, 0〉

〈1, 1〉 〈1, 1〉

(f) Its children become themselves abnormal roots
of dead trees and can execute R-action: 2 and 8
can clean because their status is EF and their par-
ent has status C.

Figure 6: Schematic example of the cleaning mechanism. Trees are filled according to the status
of their processes: white for C, dashed for EB, gray for EF .

4

Correctness and Complexity Analysis

In this chapter, we first define some concepts which will be used in the proofs (Section 4.1).
Then, we show in Section 4.2 that Algorithm LE is self-stabilizing and silent for the leader
election, assuming a distributed unfair daemon. Along the proof, we also establish a bound on
its stabilization time in steps, namely O(n3). Finally, we study more precisely the complexity
of LE in Section 4.3 (in particular, we give its complexity in rounds).

4.1 Some definitions
First, we instantiate the function Leader(p) used in the specification of the leader election

(Section 2.5).

Definition 1 (Leader). For each process p, for every configuration γ, the value Leader(p) in γ
is p.idR.

Note that the value of Leader(p) depends on the current configuration γ. Nevertheless,
when it is clear from the context, we omit the mention to γ. This will be also the case for every
predicates and notations used in the sequel.

We now recall some definitions and notations from graph theory. A path P , from pk to p0
is a sequence of processes pk, pk−1, . . . , p0 such that pi−1 ∈ Npi , for all i in {1, ..., k}. Nodes
pk and p0 are respectively called the initial and terminal extremity of P . The length of P ,
denoted by |P|, is equal to k. We call cycle any path pk, pk−1, . . . , p0 such that p0 = pk. The
distance between two processes p and q, denoted ‖p, q‖, is equal to the length of the shortest
path between p and q. The diameter of the network, denoted D, is the maximum distance
between any two processes.

The rest of the section is dedicated to introducing and justifying the notion of trees induced
by the KinshipOk relation. We first show that the predicate KinshipOk is an acyclic relation.
To that goal, we define the graph induced by the KinshipOk relation.

Definition 2 (Kinship Relation Graph). For some configuration γ, let Gkr = (V,KR) be a
directed graph such that (p, q) ∈ KR⇔ ({p, q} ∈ E) ∧ (p.par = q) ∧KinshipOk(p, q). Gkr

is called the graph of kinship relations in γ.

We first show that Gkr is a DAG (Directed Acyclic Graph). We recall, path and cycle
naturally extend to directed graph, i.e., a (directed) path P in Gkr is a sequence of processes
pk, pk−1, . . . , p0 such that (pi, pi−1) ∈ KR, for all i in {1, ..., k}.

Lemma 1. Let γ be a configuration. The graph of kinship relations in γ contains no cycle.

Proof. By definition, for all pairs of processes p, q such that KinshipOk(p, q) holds, we have:
p.idR ≥ q.idR and p.idR = q.idR ⇒ p.level = q.level + 1. Hence, the processes along any
path in Gkr are ordered w.r.t. the strict lexical order on the pair (idR, level). The result directly
follows.

18 Chapter 4. Correctness and Complexity Analysis

Hence Gkr is a DAG (Directed Acyclic Graph) and even a spanning forest since the condi-
tion p.par = q implies at most one successor per process in KR. Below, we define the roots
and trees of this spanning forest.

Definition 3 (Root). For some configuration γ, a process p satisfiesRoot(p) (and is called a root
in γ) if and only if SelfRoot(p)∨AbRoot(p), or equivalently SelfRoot(p)∨¬KinshipOk(p, p.par)
holds in γ.

Next, we define the paths, called KPaths, that follow the tree structures in Gkr, i.e., the
paths linking each process to the root of its own tree.

Definition 4 (KPath). For every process p, KPath(p) is the unique path p0, p1, . . . , pk such that
pk = p and satisfying the following conditions:

– ∀i, 1 ≤ i ≤ k, (pi.par = pi−1) ∧KinshipOk(pi, pi−1)
– Root(p0)

Using Definitions 3 and 4, we formally define trees as follows.

Definition 5 (Tree). For some configuration γ, for every process p such that Root(p), we define
Tree(p), the tree rooted at p, as follows:

Tree(p) = {q ∈ V | p is the initial extremity of KPath(q)}
This means, in particular, that we identify each tree with the ID of its root.

We give in Observation 1 an invariant on KPaths when looking at the status of the processes.
This property is based on the notion of S-Trace defined below.

Definition 6 (S-Trace). For some configuration γ, for a sequence of processes p0, p1, . . . , pk,
we define S-Trace(p0, p1, . . . , pk) ∈ {C,EB,EF}∗ as the sequence (p0.status).(p1.status)
. . . (pk.status) in γ.

Observation 1. For any configuration, we have: ∀p ∈ V, S-Trace(KPath(p)) ∈ EB∗C∗ ∪
EB∗EF ∗.

Proof. Let p be a process. If |KPath(p)| = 1, Observation 1 trivially holds. For |KPath(p)| ≥
2, assume by contradiction that S-Trace(KPath(p)) /∈ EB∗C∗ ∪ EB∗EF ∗. Then, ∃s, f ∈
KPath(p) such that s.par = f and S-Trace(f, s) ∈ {C.EB,C.EF, EF.EB,EF.C}. In all
cases, ¬GoodStatus(s, f) holds, which in turns implies that ¬KinshipOk(s, f). This contra-
dicts Definition 4.

4.2 Correctness
To prove the self-stabilization of Algorithm LE under an unfair daemon, we first show that

any execution is finite (Theorem 1) and then we show that in any terminal configuration, there
is a unique leader: for every two processes, p and q, we have Leader(p) = Leader(q) and
Leader(p) is the ID of some process (Theorem 2).

4.2. Correctness 19

4.2.1 Termination of LE
The goal, here, is to show that any execution contains a finite number of steps. We first

partition a given execution into a finite number of segments (Lemma 4), see Fig. 7. Then, we
prove that each segment contains a finite number of J-actions (Lemma 10). This latter result
implies that every execution contains a finite number of J-actions (Corollary 2). Then, we
show, in Lemma 11 and Corollary 3, that every execution contains a finite number of other
actions. This allows us to conclude in Theorem 1 that every execution contains a finite number
of steps.

Abnormal Trees.

First, we introduce some notions that refine the concept of trees.

Definition 7 (Normal/Abnormal Tree). For every configuration γ and every process p, any tree
rooted at p such that ¬AbRoot(p) in γ is called a normal tree. In this case, SelfRoot(p) ∧
SelfRootOk(p) holds in γ, by Definition 3. Any tree that is not normal is simply said to be
abnormal.

Definition 8 (Alive/Dead). Let γ be a configuration. A process p is called alive in γ if and only
if γ(p).status = C. Otherwise, p is said to be dead. A tree T in γ is called an alive tree in γ if
and only if ∃p ∈ T such that p is alive in γ. Otherwise, it is called a dead tree.

Definition 9 (Leave/Join a Tree). Let γ 7→ γ′ be a step. If a process p is in a tree T in γ, but in
a different tree T ′ in γ′ (namely, the roots of T and T ′ are different), we say that p leaves T and
joins T ′ in γ 7→ γ′.

Remark 1. No process can join a dead tree.

Lemma 2. No alive abnormal root can be created.

Proof. Let p be a process which is not an alive abnormal root in some configuration γ. This
means that p is dead, or p is a normal root (SelfRoot(p) ∧ SelfRootOk(p) holds in γ), or p is
not a root (KinshipOk(p, p.par) holds in γ).

Let γ 7→ γ′ be a step. If p executes EB-action (respectively EF -action) during the step
γ 7→ γ′ then γ′(p).status = EB (respectively γ′(p).status = EF) and, consequently, p is
dead in γ′.

If p executes R-action, SelfRoot(p) ∧ SelfRootOk(p) holds in γ′. So, p is a normal root
in γ′.

If p executes J-action, let q = Minp in γ. By definition of J-action, γ(q).status = C,
γ(p).status = γ′(p).status = C and γ(p).idR ≤ p (since p is not an abnormal root at γ).
Also, ¬SelfRoot(p) holds in γ′.

– If q does not move in γ 7→ γ′, then γ′(p).par = q, γ′(q).status = C = γ′(p).status,
γ′(p).level = γ(q).level + 1 = γ′(q).level + 1, γ′(p).idR = γ(q).idR = γ′(q).idR <
γ(p).idR ≤ p. Hence, KinshipOk(p, p.par) is true in γ′. Now, we already know that
¬SelfRoot(p) holds in γ′. Thus, ¬SelfRoot(p)∧KinshipOk(p, q) holds in γ′: p is not
a root in γ′, by Definition 3.

– Assume now that q moves in γ 7→ γ′. As γ(q).status = C, q can only executeEB-action
or J-action in the step. Consequently, γ′(q).idR ≤ γ(q).idR.
Then, γ′(p).idR = γ(q).idR ≥ γ′(q).idR and γ′(p).idR = γ(q).idR < γ(p).idR ≤ p.
So, GoodIdR(p, q) holds in γ′.

20 Chapter 4. Correctness and Complexity Analysis

If q executes J-action, γ′(p).idR 6= γ′(q).idR. Otherwise, γ′(p).idR = γ′(q).idR and
γ′(p).level = γ(q).level + 1 = γ′(q).level + 1. So GoodLevel(p, q) holds in γ′.
Finally, γ′(p).status = γ(p).status = C and γ′(q).status ∈ {C,EB}, so the predicate
GoodStatus(p, q) holds in γ′.
Thus, ¬SelfRoot(p) ∧ KinshipOk(p, q) holds in γ′ and, so, p is not a root in γ′, by
Definition 3.

Assume now that p executes no action in the step γ 7→ γ′. The only way for p to become an
alive abnormal root is that γ(p).par moves during the step, since the property “alive abnormal
root” only depends on p and p.par. Furthermore, as p is not an alive abnormal root, when p is a
normal root in γ, it stays so, in γ′.

Therefore, let us consider the case when p is not a root in γ and γ(p).par moves. As p
changes none of its variables, the only way for it to become an alive abnormal root is to have
status C in γ and thus in γ′. As GoodStatus(p, p.par) holds in γ, this implies that the status
of γ(p).par is either EB or C. Looking at case EB, p is a real child of p.par in γ with
status C; hence EF -action is disabled for p.par in γ. Looking at case C, p.par can execute
EB-action and can change only its status to EB in γ 7→ γ′: GoodStatus(p, p.par) holds
in γ′ and consequently KinshipOk(p, p.par) holds in γ′. p.par can also execute J-action
in γ 7→ γ′. This means that in γ and γ′, p.par has status C, hence GoodStatus(p, p.par)
holds in γ′. Furthermore, p.par has a smaller value of idR in γ′, hence GoodIdR(p, p.par)
and GoodLevel(p, p.par) are satisfied in γ′, and consequently KinshipOk(p, p.par) holds in
γ′.

Lemma 3. No alive abnormal tree can be created.

Proof. Let γ 7→ γ′ a step. Let p ∈ V . Assume there is no alive abnormal tree rooted at p in γ.
In particular, p is not an alive abnormal root in γ. Then, assume, by contradiction, that Tree(p)
exists and is an alive abnormal tree in γ′.

– If γ′(p).status = EF , then every process in the tree has status EF (Observation 1) and
the tree is dead, a contradiction.

– If γ′(p).status = C, then p is an alive abnormal root in γ′. But no alive abnormal root is
created (Lemma 2), a contradiction.

– If γ′(p).status = EB. Then, according to the algorithm, there are two possible cases:

γ(p).status = EB:
– If AbRoot(p) holds in γ, then Tree(p) is dead in γ (otherwise, Tree(p) is an ab-

normal alive tree in γ, a contradiction). By the definition of J-action, no process
can join Tree(p) in γ 7→ γ′. Moreover, as γ(p).status = EB, no process q in
Tree(p) satisfies Reset(q) in γ, by Observation 1. Consequently, no process can
leave Tree(p) in γ 7→ γ′. So, every process in Tree(p) still have status EF or
EB in γ′, i.e. Tree(p) is still dead in γ′, a contradiction.

– If ¬AbRoot(p) holds in γ, then p does not satisfy the predicate SelfRoot(p),
otherwise SelfRootOk(p) implies that γ(p).status = C, a contradiction. So,
let q = γ(p).par ∈ Np. ¬AbRoot(p) in γ implies that q.status = EB and
KinshipOk(p, q) in γ. This latter also implies that p ∈ RealChildrenq in γ.
Now, p ∈ RealChildrenq and p.status = EB in γ implies that q is disabled in
γ. Moreover, as γ′(p).status = EB, p does not execute any action in γ 7→ γ′.
So, ¬AbRoot(p) still holds in γ′, a contradiction.

γ(p).status = C: Then, ¬AbRoot(p) holds in γ (otherwise p is an abnormal alive root in
γ). Then, p executes EB-action in γ 7→ γ′ to get status EB. So, EBroadcast(p)∧

4.2. Correctness 21

¬AbRoot(p) implies that p.par 6= p and p.par.status = EB in γ. So, let q =
γ(p).par ∈ Np. Now p.par 6= p ∧ ¬AbRoot(p) implies that KinshipOk(p, q) in
γ. So, p ∈ RealChildrenq and, as p.status = C and q.status = EB in γ, q is
disabled in γ. Moreover, as γ′(p).status = EB, p necessarily executes EB-action
in γ 7→ γ′, which only changes its status to EB. So, ¬AbRoot(p) still holds in γ′, a
contradiction.

Finite Number of J-actions.

To show that every process p executes only a finite number of J-actions, we prove below
that p can only execute a finite number of J-actions in each segment of execution — a segment
being separated from its follower by the death or the disappearance of some tree.

Definition 10 (Disappear/Die). Let γ 7→ γ′ be some step and let p be a process such that
Root(p) in γ.

Tree(p) disappears during the step γ 7→ γ′ if and only if Tree(p) is no more defined in γ′

— namely Root(p) does not hold in γ′.
Tree(p) dies during the step γ 7→ γ′ if and only if Tree(p) is alive in γ, yet Tree(p) exists

— namely Root(p) holds — and is dead in γ′.

Definition 11 (Segment of execution). Let e = γ0γ1 . . . be any execution. e′ = γi . . . γj is a
segment of execution e (segment, for short) if and only if e′ is a maximal factor of e, where no
tree dies nor disappears.

γ0 γ1

a segment another segment

a tree dies or disappears
Figure 7: Segments of execution

Figure 7 illustrates Definition 11. We now show that the number of segments is finite.

Lemma 4. There are at most n+ 1 segments in any execution.

Proof. In the initial configuration, there are at most n abnormal roots (every process) and,
consequently, at most n abnormal trees. As no alive abnormal tree can be created (Lemma 3), if
an abnormal tree is alive, then it is alive since the initial configuration. So, there is at most n trees
that die or disappear and, consequently, there are at most n+ 1 segments in the execution.

We now count the number of J-actions processes can execute in a given segment. For that
purpose, we first need to prove intermediate lemmas that identify properties on computation
steps.

Observation 2. Let γ be a configuration and let p a process such that Reset(p) is true in γ.
Then, Tree(p) exists and is dead in γ.

Proof. Let γ be a configuration and let p be a process such that Reset(p) is true in γ. By
definition, AbRoot(p) holds in γ, hence Tree(p) is defined in γ. Furthermore, γ(p).status =
EF : by Observation 1, every process in Tree(p) has status EF in γ, and we are done.

22 Chapter 4. Correctness and Complexity Analysis

Lemma 5. Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {EB,EF} in
γ. Let T be the which contains p in γ. First, T is an abnormal tree in Second, if T does not
disappear during the step γ 7→ γ′, p is still in T in γ′ unless T was dead in γ.

Proof. Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {EB,EF} in γ.
We note r the root of the tree containing p in γ. As S-Trace(KPath(p)) ∈ EB∗EF ∗, by
Observation 1, the status of r in γ is either EF or EB. Hence AbRoot(r) holds in γ: Tree(r)
is an abnormal tree in γ.

Assume now that Root(r) holds in γ′ (the tree does not disappear during the step). If r
executes R-action in γ 7→ γ′, Observation 2 applies in γ and proves that Tree(r) is dead in γ.

If r does not (or cannot) execute R-action, its only possible action is EF -action. As
Root(r) holds in γ′, r is still abnormal root in γ′. Let then q ∈ KPath(p) in γ with q 6= r.
By Observation 1, γ(q).status ∈ {EB,EF} also. If γ(q).status = EB, q can only execute
EF -action and if γ(q).status = EF , q is disabled, as q 6= r. Executing EF -action preserves
GoodStatus and hence KinshipOk relations. Therefore, the KPath from p to r is the same
in γ and γ′ and then p ∈ Tree(r) in γ′.

Lemma 6. Let p be a process and let γ 7→ γ′ be step. If p is an abnormal root of status C in γ,
then it is still an abnormal root in γ′.

Proof. Let γ 7→ γ′ be step and let p be a process such that AbRoot(p) ∧ p.status = C in γ: p
can only execute EB-action. Therefore, γ′(p).status ∈ {C,EB} and every other variable of
p has identical value in γ and γ′.

So, if SelfRoot(p) holds in γ, then SelfRootOk(p) is false in γ, and SelfRoot(p) ∧
¬SelfRootOk(p) still holds in γ′.

Otherwise, ¬SelfRoot(p) holds in γ, i.e., p.par 6= p. Then, ¬SelfRoot(p) still holds in γ′.
Let q = γ(p).par and consider the following cases:

γ(q).status = EF : Then, ¬GoodStatus(p, q) holds in γ, which implies ¬KinshipOk(p, q)
holds in γ. However, p ∈ Childrenq in γ. So, ¬Allowed(q) holds in γ, and q is disabled.
So, γ′(p).status ∈ {C,EB} and γ′(q).status = EF , which implies ¬GoodStatus(p, q)
in γ′. Thus, ¬KinshipOk(p, q) holds in γ′.

γ(q).status = EB: Then, GoodStatus(p, q) holds in γ. So, AbRoot(p) in γ implies that
¬GoodIdR(p, q)∨¬GoodLevel(p, q) holds in γ. Now, q can only executesEF -action in
γ 7→ γ′. So, neither p nor q modify their variables par, idR, or level in γ 7→ γ′, and, con-
sequently, ¬GoodIdR(p, q)∨¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q)
holds in γ′.

γ(q).status = C: AbRoot(p) in γ implies that¬KinshipOk(p, q) holds in γ. Thus, ¬Allowed(q)
holds in γ because p ∈ Childrenq and p.status = C in γ. So, q cannot execute J-action
in γ 7→ γ′.
Then, as γ(q).status = C ∧ γ(p).status = C, GoodStatus(p, q) holds in γ. So,
AbRoot(p) in γ implies that ¬GoodIdR(p, q) ∨ ¬GoodLevel(p, q) holds in γ. As p
and q can only modify their status in γ 7→ γ′ (q can only execute EB-action in γ 7→ γ′),
¬GoodIdR(p, q) ∨ ¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q) holds in
γ′.

In any cases, ¬KinshipOk(p, q) holds in γ′. As ¬SelfRoot(p) holds in γ′, AbRoot(p) holds
in γ′.

4.2. Correctness 23

Lemma 7. Let γ be a configuration and let p be a process such that p.status ∈ {EB,EF} in
γ. Let T be the tree which contains p in γ. Let γR be the first configuration, if any, after γ, such
that p executes an R-action γR 7→ γR+1.

Assume γR exists, then T is dead in γR or has disappeared (at least once) between γ and
γR.

Proof. Let γ be a configuration and let p be a process such that p.status ∈ {EB,EF} in γ.
We note r the root of the tree which contains p in γ. Let γ = γ0γ1... be an execution starting at
γ. Let γR be the first configuration, if any, in this execution such that p executes an R-action
during the step γR 7→ γR+1.

For every configuration γx, x ∈ {0, ..., R − 1}, the status of p is EB or EF . Hence,
Lemma 5 applies iteratively in γx: either Tree(r) disappears during the step γx 7→ γx+1, or, if
not, p ∈ Tree(r) in γx+1. Hence, in γR, either Tree(r) has disappeared or, if not, p ∈ Tree(r).

When p ∈ Tree(r) in γR, by assumption, p executes an R-action between γR and γR+1.
Hence, AbRoot(p) holds in γR and thus p = r. Furthermore, Observation 2 applies and proves
that Tree(r) is dead in γR.

Lemma 8. Let p be a process and let γ 7→ γ′ be a step. Let T be the tree which contains p
in γ. If EBroadcast(p) holds in γ, then T is an abnormal alive tree in γ and if T has not
disappeared in γ′, p still belongs to T in γ′.

Proof. Let γ 7→ γ′ be a step. Let p ∈ V such that EBroadcast(p) holds in γ. We note r the
root of the tree which contains p in γ.

IfAbRoot(p) holds in γ, then p = r is the root of an alive abnormal tree, since γ(p).status =
C. Furthermore, if Tree(p) exists in γ′, p ∈ Tree(p) in γ′, trivially.

Otherwise, ¬AbRoot(p), p.par.status = EB, and KinshipOk(p, p.par) holds in γ. Ap-
plying Lemma 5 to γ(p).par, we have that γ(p).par belongs to an abnormal alive tree in γ and
so does p: Tree(r) is an alive abnormal tree.

Furthermore, first note that γ(p).par = γ′(p).par (p can only change its status toEB in γ 7→
γ′: either p do not move or executes EB-action). So, still by Lemma 5, in γ′, if Tree(r) exists
in γ′, γ′(p).par belongs to Tree(r) in γ′, since Tree(r) is not dead in γ (γ(p).status = C). As
KinshipOk(p, p.par) holds in γ, we have that p ∈ RealChildrenq in γ. Since γ(p).status =
C, q is disabled in γ (because of p) and, as p can only modify its status to EB in γ 7→ γ′ , we
still have p ∈ RealChildrenq in γ′, i.e., p and q belong to the same abnormal tree, Tree(r), in
γ′.

Corollary 1. Let γ be a configuration and let p be a process such that EBroadcast(p) holds
in γ. Let T the tree which contains p in γ. Let γR be the first configuration, if any, since γ, such
that p executes an R-action γR 7→ γR+1.

Assume γR exists, then T is an alive abnormal tree in γ but it is dead in γR or has disap-
peared (at least once) between γ and γR.

Proof. Let γ be a configuration and let p be a process such that EBroadcast(p) holds in γ. We
note r the root of the tree which contains p in γ. Lemma 8 applies in γ: Tree(r) is an alive
abnormal tree in γ.

Let γ = γ0γ1... be an execution starting at γ. Let γR be the first configuration, if any, in this
execution such that p executes an R-action during the step γR 7→ γR+1. We assume that γR
exists. Then at some step, γi 7→ γi+1, p executes a EB-action, with i < R.

Lemma 8 applies iteratively from γ0 and to γi: either Tree(r) has disappeared in γ1 (and so
between γ0 and γi+1), or p stays in Tree(r) in γ1 (and so between γ0 and γi+1), and so on.

24 Chapter 4. Correctness and Complexity Analysis

If Tree(r) has not yet disappeared in γi+1, p ∈ Tree(r) in γi+1 with γi+1(p).status = EB.
Here, Lemma 7 applies and proves that Tree(r) has disappeared in γR or p is in Tree(r) in
γR.

Lemma 9. Let p be a process. Let s be a segment of execution. Between any two executions of
J-action by p in s, p can only execute J-actions.

Proof. Let s = γ0γ1 . . . be a segment of execution and p ∈ V . Consider two executions of
J-action by p during s: one in γi 7→ γi+1 and the other in γj 7→ γj+1, with i < j. Assume
by contradiction that p executes an action different from J-action between γi+1 and γj . Let
γk 7→ γk+1 be the first step between γi+1 and γj during which p executes some other action: this
is a EB-action. Let γl 7→ γl+1 be the last step between γi+1 and γj during which p executes
some other action: this is a R-action (hence k < l).

Now, Lemma 1 applies since in γk, EBroadcast(p) holds, and in some step later γl 7→ γl+1,
p executes aR-action. This proves that in γk, some abnormal tree is alive and that in γl, this tree
is dead or has disappeared. Hence γk and γl are not in the same segment, a contradiction.

Lemma 10. In a segment of execution, there are at most (n−1)(n−2)/2 executions of J-action.

Proof. Let p ∈ V . First, p only executes J-actions between two J-actions in the same segment
(Lemma 9). So, using the guard of J-action, it follows that the value of the p.idR always
decreases during any sequence of J-actions, which means that p cannot set p.idR two times to
the same value during the segment.

Let A be the set of processes q such that q.status = C at the beginning of the segment. Let
B the set of processes q such that q executes an R-action in the segment. A ∩ B = ∅. Indeed,
pick a process q ∈ A ∩ B. q switches from status C at the beginning to status EB, and then
to status EF since some step later, it executes R-action. Hence, there exists a configuration
γb in the segment such that EBroadcast(q) is true and another γr, later on such that R-action
occurs: hence Corollary 1 applies and proves that the tree of q in γb is abnormal alive and that
it dies or disappears some step before γr. This contradicts the definition of segment. Hence,
|A|+ |B| ≤ n.

Now, p.idR can only get values from the idR of processes in A or from the ID of processes
in B. Let f : V 7→ N such that ∀p ∈ A ∪ B, if p ∈ A, f(p) = x, where x is the value of
p.idR at the beginning of the segment; otherwise, f(p) = p. Let p0, . . . pk−1 (with k ≤ n) be
the set of processes in A∪B in ascending order of f . pi changes at most i times of idR. Hence,
in a given segment, the number of executed J-actions, noted]J-action, satisfies the following
inequality:

]J-action ≤
∑k−1

i=0 i ≤
∑n−1

i=0 i = (n−1)(n−2)
2

By Lemmas 4 and 10, in any execution, there are at most n + 1 segments, where processes
execute at most (n− 1)(n− 2)/2 J-actions. Moreover, by definition, there are at most n steps
outside segments (more precisely, the steps where at least one abnormal tree dies or disappears)
where some J-actions may be executed. Hence, follows:

Corollary 2. In any execution, there are at most n
3

2
− n2 + n

2
+ 1 steps containing J-actions.

4.2. Correctness 25

Other Actions.

Below, we show an upper bound on the number of executions of other actions.

Lemma 11. In any execution, each process can execute at most n R-actions.

Proof. First, by definition, there are at most n abnormal alive trees in the initial configuration.
Let]AbT be that number. Moreover,]AbT can only decrease, by Lemma 3.

Let p be a process. We first show that when p executes R-action for the first time,]AbT ≤
n−1. Then, we show that after every subsequent execution of R-action by p,]AbT necessarily
decreases. Hence, we will conclude that p cannot execute R-action more than n, because]AbT
cannot be negative.

Consider the first step γi 7→ γi+1 where p executesR-action. Using Observation 2, Tree(p)
exists and is dead in γi. Hence, there are at most n− 1 abnormal alive trees in γi.

Consider the j− th execution of R-action by p, with j > 1. After the (j−1)− th R-action
of p, the status of p is C. So, between the (j − 1) − th and the j − th R-action, the status of
p thus switches from C to EB and from C to EF , so that p can switch its status from EF to
C when executing its j − th R-action. Hence, meanwhile there exists a configuration γb such
that EBroadcast(q) is true and another γr, later on such that p executes its j − th R-action in
γr 7→ γr+1: Corollary 1 applies and proves that the tree to which p belongs in γb is abnormal
alive and that tree dies or disappears some step before γr, and we are done.

Let p be a process. p necessarily executes R-action between two executions of EF -action
(resp. EB-action). Hence, we have the following corollary.

Corollary 3. In any execution, a process can execute EB-action and EF -action at most n
times, each.

By Corollaries 2, 3, and Lemma 11:

Theorem 1 (Convergence). Every execution contains at most n
3

2
+ 2n2 + n

2
+ 1 steps.

4.2.2 Terminal Configurations
We now show that in a terminal configuration, there is one and only one leader process,

known by all processes, i.e., for every two processes, p and q, we have Leader(p) = Leader(q)
and Leader(p) is the ID of some process.

Lemma 12. In a terminal configuration, every process has status C.

Proof. By contradiction, consider a terminal configuration γ where some process p satisfies
p.status 6= C. Then two cases are possible:

1. p.status = EB. By Observation 1, ∃q ∈ V such that q.status = EB ∧ (∀q′ ∈
RealChildrenq, q

′.status 6= EB) ∧ p ∈ KPath(q). If RealChildrenq = ∅, then q
can executes EF -action. Otherwise, there are two cases. Either ∀q′ ∈ RealChildrenq,
q′.status = EF and q can execute EF -action, or ∃q′ ∈ RealChildrenq, q′.status = C
then q′ can execute EB-action. Hence, in both cases, γ is not terminal, a contradiction.

2. p.status = EF . By Observation 1, ∃q ∈ V such that q.status = EF ∧ (Root(q)∨
(KinshipOk(q, q.par) ∧ q.par.status 6= EF) ∧ q ∈ KPath(p).
IfRoot(q), thenAbRoot(q)∨SelfRoot(q). Now, q.status = EF implies thatAbRoot(q)
holds. So, in all cases, q.status = EF ∧ AbRoot(q) holds. If Allowed(q) holds, then

26 Chapter 4. Correctness and Complexity Analysis

R-action is enabled at q, a contradiction. Otherwise, ∃r ∈ Childrenq, ¬KinshipOk(r, q)∧
r.status = C. In this case, EB-action is enabled at r, a contradiction.
If ¬Root(q), then there are two cases. Either q.par.status = C, AbRoot(q) holds and
we obtain a contradiction as in the case where Root(q) holds. Or,q.par.status = EB
and using the same argument as in case 1, we can deduce that some process is enabled, a
contradiction.
Hence, all cases, γ is not terminal, a contradiction.

Theorem 2 (Correctness). In a terminal configuration, ∀p, q ∈ V, Leader(p) = Leader(q) and
Leader(p) is the ID of some process.

Proof. Let γ a terminal configuration. Assume first, by contradiction, that there are at least two
leaders. Then, G being connected, ∃p, q ∈ V such that Leader(γ(p)) 6= Leader(γ(q)) and
q ∈ Np. Assume without loss of generality that Leader(γ(p)) = γ(p).idR < γ(q).idR =
Leader(γ(q)). By Lemma 12, p.status = q.status = C. Then, either EBroadcast(q) is
true and q can execute EB-action or q can execute J-action. Hence γ is not terminal, a
contradiction.

Assume now that the leader is not one of the processes, i.e., is a fake ID. Let p ∈ V such that
its level is minimum. Notice that γ(p).status = C by Lemma 12. If SelfRoot(p) holds in γ,
γ(p).idR 6= p. So, AbRoot(p) holds and p can execute EB-action. Otherwise, there is q ∈ Np
such that γ(p).par = q. The level of p being minimum, we have γ(p).level ≤ γ(q).level. So,
AbRoot(p) holds and p can execute EB-action. Hence, γ is not terminal, a contradiction.

Using Theorem 2, there is exactly one root in a terminal configuration (the leader elected).
So the graph of kinship relations in a terminal configuration contains exactly one tree. Hence,
we can conclude:

Remark 2. In a terminal configuration, Gkr is a spanning tree rooted at the leader.

Theorems 1 and 2 establish the self-stabilization, silence, and step complexity of Algorithm
LE . Moreover, note that idR and level can be stored in Θ(log n) bits. Hence, we can conclude:

Theorem 3. Algorithm LE is a self-stabilizing and silent leader election algorithm working
under a distributed unfair daemon. Its step complexity is at most n3

2
+ 2n2 + n

2
+ 1 steps. Its

memory requirement is Θ(log n) bits per process.

4.3 Complexity Analysis
In this section, we study the complexity of Algorithm LE in rounds and we make a worst-

case analysis of its stabilization time both in steps and rounds.

4.3.1 Stabilization Time in Rounds
Clean Configurations.

First, we study the “good” cases, i.e., when the system is in a clean configuration (defined
below). From such configurations, the execution consists in building a tree rooted at ` using
J-action only. Once, the tree is built, the system is in a terminal configuration, where every
process has elected `.

Definition 12 (Clean configuration). A configuration γ is called a clean configuration if and
only if for every process p, ¬EBroadcast(p) ∧ p.status = C holds in γ. A configuration that
is not clean is said to be dirty.

4.3. Complexity Analysis 27

Remark 3. By definition, in a clean configuration, every process p has status C and either p
is a normal root, i.e., SelfRoot(p) ∧ SelfRootOk(p), or (exclusively) KinshipOk(p, p.par)
holds.

Remark 4. Notice that in a clean configuration, the only action a process p can execute is
J-action, provided that Join(p) holds. Note also that Allowed(p) always holds due to Re-
mark 3. Verifying Join(p) then reduces to: ∃q ∈ Np, (q.idR < p.idR). In this case, the value
of p.idR can only decrease.

Lemmas 13 to 16 proves that, starting from a clean configuration, the system reaches in
O(D) rounds a terminal configuration (see Theorem 4). We first show the set of clean configu-
rations is closed.

Lemma 13. The set of clean configurations is closed.

Proof. Let γ 7→ γ′ be a step such that γ is a clean configuration. By definition, all processes
have status C in γ. So, processes can only execute J-action (Remark 4) in γ 7→ γ′, and
consequently all processes have status C in γ′. Now, ∀p ∈ V,¬EBroadcast(p)∧p.status = C
in γ implies that there is no alive abnormal root in γ. By Lemma 2, there is no alive abnormal
root in γ′ too. Now, the fact that all processes have status C and there is no alive abnormal root
in γ′ implies that ∀p ∈ V,¬EBroadcast(p) ∧ p.status = C in γ′, i.e., γ′ is clean.

Using Lemma 13, we show below that if a process is enabled in a clean configuration — for
the only action it can execute, i.e., J-action — it remains enabled until it executes it.

Lemma 14. In a clean configuration, if J-action is enabled at p, it remains enabled until it is
executed by p.

Proof. Let γ 7→ γ′ be a step such that γ is a clean configuration. Assume by contradiction that
J-action is enabled at p in γ and not in γ′, but p did not execute J-action between γ and γ′. By
Lemma 13, γ′ is also a clean configuration. So, ¬EBroadcast(p) ∧ p.status = C holds in γ′.

But Join(p) must be false in γ′. Using Remark 4, this means that there necessarily exists a
neighbor of p, say q, such that γ(q).idR < γ(p).idR but γ′(q).idR ≥ γ′(p).idR = γ(p).idR.
This contradicts Remark 4.

Lemma 15. There is no (fake) idR smaller than ` in a clean configuration.

Proof. Let γ be a clean configuration. Assume there exists a process of idR smaller than `.
Let p be such a process such that p.idR is minimum among all the processes and p.level is
minimum among all the processes having idR minimum.

Note that p.idR 6= p and consequently SelfRootOk(p) is false in γ. Hence (Remark 3),
KinshipOk(p, p.par) holds in γ. Since we take p of minimum idR, p.idR ≤ p.par.idR
in γ. As GoodIdR(p, p.par) implies that p.idR ≥ p.par.idR, p.idR = p.par.idR. Now,
GoodLevel(p, p.par) implies that p.level = p.par.level + 1, which contradicts the minimality
of p.level.

For any process p, p can only set p.idR to its own ID or copy the value of q.idR, where q is
one of its neighbors. So, we have the following remark:

Remark 5. No fake ID is created during any step.

Lemma 16. In a clean configuration, if the idR of a process p is `, p is disable forever.

28 Chapter 4. Correctness and Complexity Analysis

Proof. Let γ be a clean configuration. Let p be a process with γ(p).idR = `. By Remark 4,
only J-action can be enabled in γ and its guard reduces to ∃q ∈ Np, (q.idR < p.idR). But
Lemma 15 ensures that this cannot be true, hence p is disabled in γ. Then, by Lemma 13 and
Remark 5, this will be true forever.

Corollary 4. A clean configuration where ∀p ∈ V, p.idR = `, is terminal.

Theorem 4. In a clean configuration, the system reaches a terminal configuration where ∀p ∈
V, p.idR = ` in at most D rounds.

Proof. Consider any execution e that starts from a clean configuration. In the following, we
denote by ρi the first configuration of the ith round in e. We show by induction on the distance
d ≥ 0 between the processes and ` that ∀p ∈ V such that ‖p, `‖ ≤ d, ρd(p).idR = `.

Base case: If ‖p, `‖ = 0, p = `. Note that KinshipOk(p, p.par) cannot hold in ρ0 since
GoodIdR(p, p.par) would implies that p.idR < p which is false by Lemma 15. Hence,
from Remark 3, SelfRoot(p) ∧ SelfRootOk(p) holds in ρ0 and ρ0(p).idR = p = `.

Induction step: Assume the property holds at some d ≥ 0. If ‖p, `‖ = d + 1, ∃q ∈ Np such
that ‖q, `‖ = d. By induction hypothesis and by Lemma 16, q.idR = ` and q is disabled
forever since ρd. If p.idR = ` in ρd, it remains so forever (Lemma 16). If p.idR 6= ` in
ρd then q.idR < p.idR (Lemma 15). Then, J-action is enabled at p in ρd and remains
enabled until p executes it (Lemma 14). As there is no fake ID smaller than ` (Lemma 15),
p.idR = ` after p executes J-action, i.e., after at most one round. Hence, p.idR = ` in
ρd+1.

As D ≥ max {‖p, `‖, p ∈ V }, in at most D rounds, the system reaches a configuration
where ∀p ∈ V, p.idR = `. By Corollary 4, this configuration is terminal.

Dirty Configurations.

In the previous section, we showed that, if the initial configuration is clean, the system
reaches a terminal configuration in at most D rounds. But what happens if the initial config-
uration is dirty, i.e., if there is a process p such that EBroadcast(p) holds or p.status 6= C.
In this section, we prove that starting from a dirty configuration, the system reaches a clean
configuration in at most 3n rounds. More precisely, we show that a dirty configuration con-
tains abnormal trees that are “cleaned” in at most 3n rounds. The system will be in a clean
configuration afterwards.

Lemma 17. In an dirty configuration, there exists at least one abnormal root.

Proof. Let γ be a dirty configuration. Then, ∃p ∈ V such that p.status 6= C∨EBroadcast(p).
We search for an abnormal root.

1. If p.status ∈ {EB,EF}, using Observation 1, there is q ∈ KPath(p) such that q.status ∈
{EB,EF}∧Root(q). Then,AbRoot(q)∨SelfRoot(q). Now, SelfRoot(q)∧q.status ∈
{EB,EF} implies AbRoot(q). Hence, in all cases, AbRoot(q) holds.

2. If EBroadcast(p) holds, Lemma 8 applies and we are done.

We have just shown that there are abnormal roots (and so abnormal trees) in dirty configura-
tions. Below, we prove that these abnormal trees will disappear after three waves of “cleaning”.
After the first wave, an abnormal tree becomes dead (Theorem 5), after the second wave any

4.3. Complexity Analysis 29

abnormal root gets the status EF (Theorem 6) and finally after the third wave there is no more
abnormal trees (Theorem 7), hence the system is in a clean configuration.

The following technical lemma is used in the proof of Theorem 5.

Lemma 18. When EB-action is enabled at a process p, it remains enabled until p executes
EB-action.

Proof. Assume that EB-action is enabled at a process p in a configuration γ, but p did not
execute EB-action during the step γ 7→ γ′. Notice that p does not execute any action during
this step, as guards are mutually exclusive. As EB-action is enabled in γ, γ(p).status = C
and then, γ′(p).status = C.

First, assume AbRoot(p) holds in γ. If SelfRoot(p) ∧ ¬SelfRootOk(p) holds in γ and,
as these predicates only depends on the local state of p and as p does not execute any action
during the step, it also holds in γ′: the action is still enabled in γ′. Otherwise, ¬SelfRoot(p) ∧
¬KinshipOk(p, p.par) holds in γ. These predicates only depends on the local state of p and
its parent. Now, Allowed(p.par) does not hold in γ because of p, so p.par cannot execute
R-action nor J-action during γ 7→ γ′. Then, either p.par executes EF -action, changes its
status to EF and GoodStatus(p, p.par) is false in γ′, or it executes EB-action and changes its
status to EB. In these two cases, EBroadcast(p) holds in γ′.

Now, assume p.par.status = EB, p.par can only execute EF -action and change its status
to EF . Then, GoodStatus(p, p.par) is false in γ′, which implies that EBroadcast(p) holds in
γ′.

Theorem 5. In at most n rounds, the system reaches a configuration where every abnormal tree
(if any) is dead.

Proof. Consider any execution e = γ0, ∀i > 0, we denote by γRi
the last configuration of

the ith round and so the first configuration of the i + 1th round of e. Moreover, let γR0 = γ0
be the initial configuration. We show by induction on the length of the KPaths that, ∀i ≥ Rd

(d ≥ 1), ∀p ∈ V , if p is in an abnormal tree and |KPath(p)| ≤ d in γi, then p is dead in γi.

Base Case: If p is in an abnormal tree and |KPath(p)| = 1, p is an abnormal root. As no alive
abnormal root is created (Lemma 2), if p is alive, it is an alive abnormal root since γR0

and if predicate (p.status = C ∧ AbRoot(p)) becomes false in some configuration, then
it remains false forever. Hence, it is sufficient to show that any alive abnormal root is no
more an alive abnormal root after one round (that is, from γR1).
By definition, EB-action is enabled at p in γR0 and p executes EB-action during the
first round (Lemma 18). Hence, p is dead at the end of the first round, and we are done.

Induction Hypothesis: Let d ≥ 1. Assume that ∀i ≥ Rd, ∀p ∈ V , if p is in an abnormal tree
and |KPath(p)| ≤ d in γi, then p is dead in γi.

Induction Step: We first show that for every p ∈ V , for every i ≥ Rd, if (p.status = C ∧
|KPath(p)| ≤ d + 1) is false in configuration γi, then for every j ≥ i, (p.status =
C ∧ |KPath(p)| ≤ d+ 1) is false in configuration γj .
Assume by contradiction that the predicate “p.status = C ∧ |KPath(p)| ≤ d + 1” is
false in γj , but true in γj+1 (j ≥ i). By induction hypothesis, |KPath(p)| = d + 1 > 1
in γj+1 (indeed, p is alive in γj+1). So, γj+1(p).par 6= p. So, let q ∈ Np such that
γj+1(p).par = q. By definition, |KPath(q)| = d in γj+1. By induction hypothesis,
γj+1(q).status ∈ {EB,EF}. Now, p.status = C and |KPath(p)| > 1 in γj+1, so p
is not an abnormal root in γj+1. Hence, γj+1(q).status = EB (by Observation 1) and,
consequently, γj(q).status ∈ {C,EB}.

30 Chapter 4. Correctness and Complexity Analysis

– If γj(q).status = EB, then p does not execute any action in the step γj 7→ γj+1 (other-
wise, γj+1(p).status 6= C or γj+1(p).par 6= q). Hence, γj(p).status = γj+1(p).status =
C. By hypothesis, “p.status = C ∧ |KPath(p)| ≤ d + 1” is false in γj , so we have
|KPath(p)| > d + 1 in γj . Now, γj(p).status = C and γj(q).status = EB, so
S-Trace(KPath(p)) = EB+C in γj (Observation 1) and p is the only process in
its KPath that can execute an action in γj 7→ γj+1. Hence, for every q such that
q ∈ KPath(p) in γj , we have q ∈ KPath(p) in γj+1, and consequently |KPath(p)| >
d+ 1 in γj+1. So p.status = C ∧ |KPath(p)| ≤ d+ 1 is false in γj+1, a contradiction.

– If γj(q).status = C, then q is in an alive abnormal tree in γj (indeed, q executes
EB-action in γj 7→ γj+1, and so Lemma 8 applies). As q is alive in γj , we have
|KPath(q)| > d in γj by induction hypothesis. Moreover, q is not an abnormal root
(there is no more alive abnormal root after the first round, see the base case). Hence,
the status of its parent in γj isEB. Now, |KPath(q)| > d and S-Trace(KPath(q)) =
EB+C in γj (Observation 1). So, q is the only one in itsKPath that executes an action
in γj 7→ γj+1 and this action is EB-action, which maintains the KinshipOk relation.
Hence, |KPath(q)| > d in γj+1 and consequently, |KPath(p)| > d + 1 in γj+1, a
contradiction.

Hence, for every process p, if (p.status = C ∧ |KPath(p)| ≤ d + 1) is false in some
configuration γi with i ≥ Rd, then (p.status = C ∧ |KPath(p)| ≤ d+ 1) remains false
forever.
Now, EB-action is continuously enabled ∀p such that p is alive |KPath(p)| = d + 1 in
γRd

(by induction hypothesis and Lemma 18). So, p becomes dead during the round and,
∀j ≥ Rd+1, γj contains no alive process p such that |KPath(p)| ≤ d+ 1.

n ≥ max {|KPath(p)|,∀p ∈ V }. Hence, any process in an abnormal tree becomes dead in
at most n rounds, and we are done.

Lemma 19. IfEF -action is enabled at a process p, it remains enabled until p executesEF -action.

Proof. Assume by contradiction EF -action is enabled at a process p in configuration γ and is
not enabled in the next configuration γ′, but p did not execute EF -action during the step γ 7→
γ′. Notice that p does not execute any action during this step, as guards are mutually exclusive.
As EFeedback(p) holds in γ, γ(p).status = γ′(p).status = EB. As EFeedback(p) does
not hold in γ′ and no process can execute J-action and choose a process of status EB as
parent, ∃q ∈ RealChildrenp such that γ(q).status = EF and γ′(q).status 6= EF . Now,
because γ(q).status = EF , q can only execute R-action. However, as q ∈ RealChildrenp,
KinshipOk(q, p) holds in γ and then q is not a root. So, q cannot execute any action and change
its status during γ 7→ γ′, a contradiction.

Theorem 6. Let γ be a configuration containing abnormal trees and where all abnormal trees
are dead. In at most n rounds from γ, the system reaches a configuration where the status of all
abnormal roots is EF .

Proof. Consider any execution e = γ0, . . . starting from a configuration that contains abnormal
trees and where all abnormal trees are dead. ∀i > 0, we denote by γRi

the last configuration of
the ith round and so the first configuration of the i + 1th round. Moreover, let γR0 = γ0 be the
initial configuration.

Claim 1: ∀p ∈ V , ∀i ≥ R0, if γi(p).status 6= EB, then ∀j ≥ i, γj(p).status 6= EB.

4.3. Complexity Analysis 31

Assume by contradiction that γj(p).status 6= EB and γj+1(p).status = EB, with γj 7→
γj+1. Then, p.status = C in γj and EB-action is enabled at p in γj . So, p is in an alive
abnormal tree in γj (Lemma 8), a contradiction to Lemma 3.

In any configuration γ, we denote by MaxLengthKPath(p) = max{|KPath(q)|, q ∈
V ∧ p ∈ KPath(q)}. Again in γ, we define L(p) = MaxLengthKPath(p) − |KPath(p)|
and EBL(p, k) ≡ p.status = EB ∧ L(p) = k.

Claim 2: ∀i ≥ R0, if EBL(p, ki) holds in γi, then ∀j ≥ i,∀kj < ki,¬EBL(p, kj) holds in γj .
If j = i, EBL(p, kj) is false for kj < ki because L(p) cannot have two different values
in a same configuration. Assume now j > i. The case ki = 0 is direct. Assume ki > 0.
Assume by contradiction that EBL(p, ki) holds in γi and EBL(p, kj) holds in γj with
j > i and kj < ki. So, γi(p).status = γj(p).status = EB and there are two cases:
– p.status = EB in all the configurations between γi and γj . Consider the step γi 7→
γi+1. Let q be any process such that p ∈ KPath(q) in γi. So, KPath(q) = q0 . . . qi =
p . . . qk = q and S-Trace(KPath(q)) = EB+EF ∗ in γi. There is a unique process
in KPath(q) that can execute an action in γi 7→ γi+1 (the only one of status EB
with children of status EF). If it executes an action, it is EF -action which main-
tains KinshipOk relation. Hence, ∀q′ ∈ KPath(q) in γi, q′ ∈ KPath(q) in γi+1.
We can apply this latter property to every process r such that p ∈ KPath(r) and
|KPath(r)| = MaxLengthKPath(p) in γi: p ∈ KPath(r) in γi+1 and the value
of |KPath(r)| in γi+1 is greater than or equal to the value of |KPath(r)| in γi. So,
EBL(p, ki+1) holds with ki+1 ≥ ki. Applying the same argument on step γi+1 7→ γi+2,
etc., until step γj−1 7→ γj , we obtain that EBL(p, kj) is true in γj with kj ≥ ki, a con-
tradiction.

– There is a configuration between γi and γj where p.status 6= EB. So, ∃x such that
i < x < j, γx(p).status 6= EB and γx+1(p).status = EB. This contradicts Claim 1.

We show by induction that ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is false in
γi.

Base case: There are three cases:
1. If L(p) = 0 in γR0 and γR0(p).status = EB, then EF -action is enabled at p in
γR0 , p executes EF -action during the first round, by Lemma 19 and p gets status
EF . By Claim 1, p.status remains different from EB forever and EBL(p, 0) is
false in γi, ∀i ≥ R1.

2. If γR0(p).status 6= EB, p.status 6= EB forever (Claim 1) and then EBL(p, 0) is
false forever.

3. If EBL(p, k) holds in γR0 with k > 0, EBL(p, 0) is false forever (Claim 2).
Induction hypothesis: ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is false in γi.
Induction step: There are four cases:

1. If L(p) = d and γRd
(p).status = EB, ∀q ∈ RealChildrenp in γRd

, L(q) < d
by definition and γRd(q).status 6= EB by induction hypothesis. Now, the trees
are dead, so γRd

(q).status = EF . Hence, EF -action is enabled at p in γRd
, p

executes EF -action during the round (Lemma 19) and gets status EF . By Claim
1, p.status 6= EB forever so EBL(p, d) is false at the end of the d+ 1th round and
remains false forever.

2. If L(p) = d and γRd
(p).status 6= EB, then p.status 6= EB forever (Claim 1). So,

EBL(p, d) is false forever.

32 Chapter 4. Correctness and Complexity Analysis

3. If L(p) < d, by induction hypothesis γRd
(p).status 6= EB and we conclude as in

case 2.

4. If EBL(p, k) holds in γRd
with k > d, EBL(p, i) is false forever ∀i ≤ d (Claim 2).

With d = n, we have ∀i ≥ Rn, ∀p ∈ V , ∀k ≤ n− 1, EBL(p, k) is false in γi: hence, in at
most n rounds, there is no more process of status EB in abnormal trees, those ones being dead.
So, all processes (and in particular the abnormal roots) in abnormal trees have status EF .

Lemma 20. If all abnormal trees are dead and R-action is enabled at a process p, then
R-action remains enabled at p until p executes it.

Proof. Let γ be a configuration, where all abnormal trees are dead. Assume, by contradiction,
that R-action is enabled at a process p in a configuration γ and is not enabled in the next
configuration γ′, but p did not execute R-action during the step γ 7→ γ′. Notice that p does not
execute any action during this step, as guards are mutually exclusive.

AsR-action is enabled in γ and p does not execute an action during the step, γ(p).status =
γ′(p).status = EF .

If SelfRoot(p)∧¬SelfRootOk(p) holds in γ, it also holds in γ′ because p does not execute
an action between γ and γ′ and these predicates only depends on the local state of p.

Otherwise ¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par) holds in γ. Let q = p.par. If q does
not execute an action between γ and γ′, p is still an abnormal root. Otherwise, three cases are
possible:

– ¬GoodIdR(p, q) holds in γ.

1. First, if γ(p).idR < γ(q).idR. If q executes EB-action or EF -action during the
step, the idR of q does not change, so γ′(p).idR < γ′(q).idR, and AbRoot(p) holds
in γ′. Otherwise q executes R-action or J-action. Then γ′(q).status = C, so
¬GoodStatus(p, q) and AbRoot(p) holds in γ′.

2. If γ(p).idR ≥ p, the idR is not modified during the step, so γ′(p).idR = γ(p).idR ≥
p and AbRoot(p) holds in γ′.

– ¬GoodLevel(p, q) holds in γ. Then γ(p).idR = γ(q).idR but γ(p).level 6= γ(q).level+
1. If q executes EB-action or EF -action, its idR and its level do not change, so
γ′(p).idR = γ′(q).idR and γ′(p).level 6= γ′(q).level+ 1, so AbRoot(p) holds in γ′. Oth-
erwise, q executesR-action or J-action. Then γ′(q).status = C, so ¬GoodStatus(p, q)
and AbRoot(p) holds in γ′.

– ¬GoodStatus(p, q) holds in γ. Then γ(q).status = C, and q can only executeEB-action
or J-action between γ and γ′. If q executes EB-action then EBroadcast(q) holds in γ,
so q is in an abnormal tree (Lemma 8). But, by hypothesis, all abnormal trees are dead in
γ, so γ(q).status 6= C, a contradiction. If q executes J-action then γ′(q).status = C,
so ¬GoodStatus(p, q) and AbRoot(p) holds in γ′.

Thus, γ′(p).status = EF andAbRoot(p) holds in γ′ and, consequently,Allowed(p) is false
in γ′. So ∃q ∈ Np such that q ∈ Childrenp∧¬KinshipOk(q, p) holds in γ′ but γ′(q).status =
C. Two cases are possible:

– If q /∈ Childrenp in γ, then q executes J-action during the step γ 7→ γ′ and Minq = p.
But γ(p).status = EF , a contradiction.

– Otherwise q ∈ Childrenp in γ and γ(q).status 6= C. q executes either EF -action
and γ′(q).status = EF , or R-action and γ′(q).par 6= p, so q /∈ Childrenp in γ′, a
contradiction.

4.3. Complexity Analysis 33

Definition 13 (Abnormal process). A process p is called abnormal process if and only if p
belongs to an abnormal tree. p is said to be normal, otherwise.

As no process can join a dead abnormal tree (Remark 1) and no alive abnormal tree can be
created (Lemma 3), we have the following remark:

Remark 6. In a configuration where every abnormal tree is dead, the number of abnormal pro-
cesses can only decrease.

Theorem 7. Starting from a configuration where every abnormal tree is dead and the status of
their roots is EF , there is no more abnormal processes in at most n rounds.

Proof. Let γ0 be a configuration where all abnormal trees are dead and the status of their roots
is EF . By Observation 1, all abnormal processes have status EF in γ0. So, from γ0, no process
can be ever an abnormal process with a status different of EF (such a process can only execute
R-action, then it is a normal process forever, by Lemma 3). Then, by definition, the number of
abnormal processes in γ0 is at most n. Moreover, by Remark 6, it is sufficient to show that in
any configuration γk reachable from γ0, if the number of abnormal processes is not null, then at
least one of them becomes normal within the next round.

So, let assume that some process p is abnormal in γk. Then, γk(p).status = EF . By
Observation 1 and Lemma 20, the initial extremity r of KPath(p) is an abnormal process (of
statusEF) and executesR-action within the next round. After executingR-action, r is normal
(actually, r becomes a self root), and we are done.

By definition, the root of a normal tree has the status C. So, by Observation 1, we have:

Remark 7. Every process has the status C in a configuration containing no abnormal processes.
Moreover, this configuration is clean.

Using Lemma 17 and Theorems 5 to 7, we can conclude:

Theorem 8. In at most 3n rounds, the system reaches a clean configuration.

Then, using Theorems 4 and 8 we get:

Theorem 9 (Round Complexity). In at most 3n + D rounds, the system reaches a terminal
configuration.

4.3.2 Worst Case Analysis of the Stabilization Time
Lower Bound on the Worst Case Stabilization Time in Rounds.

We now show that the bound proposed in Theorem 9 cannot be improved. To see this, we
exhibit a construction that gives, ∀n ≥ 4, ∀D, 2 ≤ D ≤ n − 2, a network of n processes
whose diameter is D, from which there is a possible synchronous execution that lasts exactly
3n+D rounds. (Recall that every synchronous execution is possible under the distributed unfair
daemon.)

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that
pi has ID i, ∀i ∈ [1..n]. Figure 8a shows the system in its initial configuration. In details,
processes p1, pn, . . . ,p2 form a chain, i.e., {p1, pn} ∈ E and {pi, pi−1} ∈ E ∀i = 3 . . . n.

We add k “legs”, with 2 ≤ k ≤ n− 2, as follows:

If k = n− 2, then {p2, p1} ∈ E and ∀i ∈ [4..n], {p2, pi} ∈ E,

Otherwise ∀i ∈ [4..k + 3], {p2, pi} ∈ E.

34 Chapter 4. Correctness and Complexity Analysis

2

1
n

...

j
. . .

5

4

3

〈0, 0〉

〈0, n-1〉

〈0, n-2〉

〈0, j-2〉 〈0, 3〉

〈0, 2〉

〈0, 1〉

(a) The initial configuration.
{p2, pj} is the “last” leg
(j = k + 3).

2

1
n

...

j
. . .

5

4

3

〈0, 0〉

〈0, n-1〉

〈0, n-2〉

〈0, j-2〉 〈0, 3〉

〈0, 2〉

〈0, 1〉

(b) In n rounds, the EB-wave
reaches p1.

2

1
n

...

j
. . .

5

4

3

〈0, 0〉

〈0, n-1〉

〈0, n-2〉

〈0, j-2〉 〈0, 3〉

〈0, 2〉

〈0, 1〉

(c) In n rounds, p2 gets status
EF .

2

1
n

...

j
. . .

5

4

3

〈2, 0〉

〈0, n-1〉

〈0, n-2〉

〈0, j-2〉 〈0, 3〉

〈0, 2〉

〈3, 0〉

(d) p2 and p3 sequentially execute
R-action.

2

1
n

...

j
. . .

5

4

3

〈2, 0〉

〈0, n-1〉

〈0, n-2〉

〈0, j-2〉 〈0, 3〉

〈4, 0〉

〈2, 1〉

(e) p3 executes J-action and
p4 simultaneously executes
R-action.

2

1
n

...

j
. . .

5

4

3

〈2, 0〉

〈1, 0〉

〈0, n-k-2〉

〈2, 1〉 〈2, 1〉

〈2, 1〉

〈2, 1〉

(f) In n − 3 rounds, the cleaning
is finished.

2

1
n

...

j
. . .

5

4

3

〈2, 0〉

〈1, 0〉

〈1, 1〉

〈1, n-k-2〉 〈2, 1〉

〈2, 1〉

〈2, 1〉

(g) In n−k−2 rounds, processes
n to k − 3 joins Tree(1).

2

1
n

...

j
. . .

5

4

3

〈1, n-k-1〉

〈1, 0〉

〈1, 1〉

〈0, n-k-2〉 〈2, 1〉

〈2, 1〉

〈2, 1〉

(h) Processes p2 and pk−2 simul-
taneously execute J-action.

2

1
n

...

j
. . .

5

4

3

〈1, n-k-1〉

〈1, 0〉

〈1, 1〉

〈0, n-k-2〉 〈1, n-k〉

〈1, n-k〉

〈1, n-k〉

(i) In one round, the system
reaches a terminal configuration
where p1 is the leader.

Figure 8: An example in 3n+D rounds

Notice that the diameter of the network is n − k and can be adjusted by adding or removing
some legs.

We assume the following initial configuration:
– pi.idR = 0 ∀i ∈ [1..n],
– p1.level = n− 1 and p1.par = pn,
– p2.par = p2 and p2.level = 0,
– pi.level = i− 2 and pi.par = pi − 1, ∀i ∈ [3..n].
We consider a synchronous daemon, i.e., in a configuration γ, every process in Enabled(γ)

is selected by the daemon to execute an action. So, in this case, every round lasts exactly one
step.

The execution is then as follows:
– p2, p3, p4 . . . pn, p1 sequentially execute EB-action: n rounds. (See Figure 8b.)
– p1, pn, pn−1, . . . , p2 sequentially execute EF -action: n rounds. (See Figure 8c.)
– p2 and p3 sequentially execute R-action: 2 rounds. (See Figure 8d.)
– For i = 4 . . . n, simultaneously pi and pi−1 respectively executes R-action and J-action,

in particular, pi−1 joins Tree(p2): n− 3 rounds. (See Figures 8e and 8f.)

4.3. Complexity Analysis 35

– p1 executes R-action and pn executes J-action simultaneously: 1 round.
– For i = n . . . k+3, i executes J-action to join Tree(1): n−k−2 rounds. (See Figure 8g.)
– p2 and pk+2 simultaneously execute J-action to join Tree(1): 1 round. (See Figure 8h.)
– p3, . . . , pk+1 simultaneously execute J-action and then the configuration is terminal: 1

round. (See Figure 8i.)
Hence, the execution lasts exactly 3n + (n − k) = 3n + D rounds. Using Theorem 9 we

can conclude:

Theorem 10. In the worst case, the round complexity of LE is exactly 3n+D rounds.

Lower Bound on the Worst Case Stabilization Time in Steps.

We show that the bound given in Theorem 1 can be asymptotically matched, i.e., we give an
example of possible execution that stabilizes in Ω(n3) steps, for every n ≥ 4.

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that pi
has ID n + i, ∀i ∈ [1..n]. Figure 9a shows the network in this initial configuration. In details,
there are 2n − 3 edges: {pi, pi+1} ∀i = 1 . . . n − 2 and {pi, pn} ∀i = 1 . . . n − 1. (Notice that
the diameter of this network is 2.) The initial configuration is as follows:

– pi.idR = i ∀i ∈ [1..n− 1], and pn.idR = 2n.
– pi.par = pi, pi.level = 0 and pi.status = C ∀i ∈ [1..n].
We consider the following execution:
– For i = n− 1 . . . 1, (i−−), we clean Tree(pi) the following way:

1. For j = n− 2 . . . i, (j −−), 1

a) For k = j + 1 . . . n− 1, (k + +), 2

– pk joins Tree(pj).

This part lasts
∑n−1−i

k=1 k steps.

2. pi, pi+1, . . . , pn−1 sequentially execute EB-action: n− i steps.

3. pn−1, pn−2, . . . , pi sequentially execute EF -action: n− i steps.

4. pi, pi+1, . . . , pn−1 sequentially execute R-action: n− i steps.

Figures 9e to 9h show the cleaning of Tree(pn−3).
– After all abnormal trees have been cleaned, processes pn−1 to p2 join Tree(p1) similarly

as Case 1:
∑n−2

i=1 i steps (Figure 9j).
– pn executes J-action to join Tree(p1): 1 step (Figure 9k).
Hence, the complete execution lasts:(

n−1∑
i=1

(3(n− i) +

i−1∑
k=1

k)

)
+

(
n−2∑
i=1

i

)
+ 1 =

n3

6
+

5

2
n2 − 11

3
n+ 2 steps

So, there exists an execution in Ω(n3). Using Theorem 3, we can conclude:

Theorem 11. In the worst case, the step complexity of LE is in Θ(n3) steps.

1. Of course, when n− 2 < i, there is no iteration.
2. Of course, when j + 1 > n− 1, there is no iteration.

36 Chapter 4. Correctness and Complexity Analysis

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈n-1, 0〉

〈n-2, 0〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

pn

pn-1
pn-2

pn-3 p2

p1

(a) The initial configuration

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈2n-1, 0〉

〈n-2, 0〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

(b) In three steps, pn−1 becomes
normal

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈n-2, 1〉

〈n-2, 0〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

(c) pn−1 executes J-action and
joins Tree(pn−2)

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈2n-1, 0〉

〈2n-2, 0〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

(d) In six steps, the abnormal tree
rooted in pn−2 is cleaned

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈2n-2, 1〉

〈2n-2, 0〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

(e) pn−1 executes J-action and
joins the normal tree Tree(pn−2)

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈2n-2, 1〉

〈n-3, 1〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

(f) pn−2 executes J-action
and joins the abnormal tree
Tree(pn−3)

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈n-3, 2〉

〈n-3, 1〉

〈n-3, 0〉 〈2, 0〉

〈1, 0〉

(g) pn−1 executes J-action and
updates its idR to n− 3.

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈2n-1, 2〉

〈2n-2, 1〉

〈2n-3, 0〉 〈2, 0〉

〈1, 0〉

(h) In nine steps, the abnormal
tree rooted in pn−3 is cleaned

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈2n-1, 2〉

〈2n-2, 1〉

〈2n-3, 0〉 〈n+2, 0〉

〈n+1, 0〉

(i) There is no more abnormal
trees

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈2n, 0〉

〈n+1, n-2〉

〈n+1, n-3〉

〈n+1, n-4〉 〈n+1, 1〉

〈n+1, 0〉

(j) In
∑n−2

i=1 i steps, processes pn−1 to p2
elect p1

2n

2n-1

2n-2

2n-3

. . .

n+2

n+1

〈n+1, 1〉

〈n+1, n-2〉

〈n+1, n-3〉

〈n+1, n-4〉 〈n+1, 1〉

〈n+1, 0〉

(k) In one step, the system reaches a termi-
nal configuration where p1 is leader.

Figure 9: An example in Ω(n3) steps

5

Step Complexity of Algorithm DLV

In this chapter, we study the step complexity of the algorithm given in [9], called here
DLV . 1 Below, we show that its stabilization time is not polynomial in steps.

First, we give the code of algorithmDLV and an informal explanation of its main principles
in Section 5.1. Then, in Section 5.2 we give an example of a class of network in which there
is a possible execution that stabilizes in Ω(n4) steps. Finally, in Section 5.3, we generalize the
previous example to a class of network where there is a possible execution that stabilizes in
Ω(nα+1) for any α ≥ 3.

5.1 Overview of DLV
First, Algorithm DLV uses priorities. Each of its actions is given with priority number.

When an enabled process is selected by the daemon, it only executes its enabled action with the
lowest priority number.

Algorithm DLV (refer to Algorithm 2) elects the process of minimum ID, `, and builds a
breadth-first spanning tree rooted at `. To ensure that every process knows which one is elected,
it maintains a variable leader to save its current leader. Variables parent and level are used to
represent the tree. The key of a process p is the combination of its two variables p.leader and
p.level. Notice that the keys are ordered by a lexical order.

When a process p has a neighbor with a smaller key, p executes action J , gets the successor
key of the smaller such neighbor (BestNbrKey(p)) and chooses this latter as parent. Notice
that, contrary to our algorithm, p can execute action J and change its parent if there is a process
with the same leader but with a level smaller than p.level − 1, in order to build a breadth-first
spanning tree.

As inLE , they define a “good relation” between a process p and its parent called IsTrueChld(p).
It ensures that the key of p is the successor key of its parent and that its leader is smaller than its
own ID. Then, a maximal set of processes linked by parent pointers and satisfying IsTrueChld
relation defines a tree. The root of this tree can be a true root (IsTrueRoot(p)), i.e., the key of
p is its self key (〈p, 0〉). In this case, they said that it is a normal tree. Otherwise, the root is a
false root (IsFalseRoot(p)), i.e., neither a true root nor a true child, and they said that it is an
abnormal tree.

Color waves.

The main difference between DLV and LE is the way to deal with these abnormal trees.
Instead of using a status and a three waves cleaning, DLV uses color waves. More precisely,
each process has a variable color, either 1 or 2. A process can only change its parent to a
neighbor of color 2 and after executing action J , the process gets color 1.

A process p of color 2 cannot change its color to 1 when it has possible recruits (Recruits(p)
6= ∅), i.e. there are some neighbors with a bigger key that may choose p as parent later. Further-
more, a process can change its color, executing actions C1 or C2, if it has the same color than
its parent (it is trivially satisfied for every true root) and if all of its true children have the other
color.

1. DLV stands for “Datta, Larmore and Vemula.”

38 Chapter 5. Step Complexity of Algorithm DLV

Algorithm 2 Algorithm DLV [9] for every process p
Variables
p.leader ∈ N, p.level ∈ N, p.key = 〈p.leader, p.level〉, p.parent ∈ Np ∪ {p}
p.color ∈ {1, 2}, p.done ∈ B

Macros
SelfKey(p) ≡ 〈p, 0〉
SuccKey(p) ≡ 〈p.leader, p.level + 1〉
BestNbrKey(p) ≡ min{q.key | (q ∈ Np) ∧ (SuccKey(q) < SelfKey(p)) ∧ (q.color = 2)}
TrueChldrn(p) ≡ {q ∈ Np | (q.parent = p) ∧ (q.key = SuccKey(p))}
FalseChldrn(p) ≡ {q ∈ Np | (q.parent = p) ∧ (q.key 6= SuccKey(p))}
Recruits(p) ≡ {q ∈ Np | q.key > SuccKey(p)}

Predicates
IsTrueRoot(p) ≡ p.key = SelfKey(p)
IsTrueChld(p) ≡ (p.key = SuccKey(p.parent) ∧ (p.leader < p)
IsFalseRoot(p) ≡ ¬IsTrueRoot(p) ∧ ¬IsTrueChld(p)
Done(p) ≡ (Recruits(p) = ∅) ∧ (∀q ∈ TrueChldrn(p), q.done)
ColorFrozen(p) ≡ IsTrueRoot(p) ∧ p.done

Guards
Join(p, q) ≡ (IsFalseRoot(p) ∨ (SuccKey(q) < p.key)) ∧ (q.color = 2)

∧(q.key = BestNbrKey(p)) ∧ (FalseChldrn(p) = ∅)
Reset(p) ≡ IsFalseRoot(p)
Color1(p) ≡ (p.color = 2) ∧ ¬ColorFrozen(p) ∧ (p.parent.color = 2)

∧(Recruits(p) = ∅) ∧ (∀q ∈ TrueChldrn(p), q.color = 1)
Color2(p) ≡ (p.color = 1) ∧ ¬ColorFrozen(p) ∧ (p.parent.color = 1)

∧(∀q ∈ TrueChldrn(p), q.color = 2)
UpdateDone(p) ≡ p.done 6= Done(p)

Actions
J (priority 1) :: Join(p, q) → p.key = SuccKey(q); p.parent = q;

p.color = 1; p.done = false;
R (priority 2) :: Reset(p) → p.key = SelfKey(p); p.parent = p;

p.color = 2; p.done = false;
C1 (priority 3) :: Color1(p) → p.color = 1; p.done = Done(p);
C2 (priority 3) :: Color2(p) → p.color = 2; p.done = Done(p);
UD (priority 4) :: UpdateDone(p) → p.done = Done(p);

To add a new level in the tree, the leaves must change their color to 2. A first wave of actions
C1 is initiated by the parents of the leaves and absorbed by the root. Then, a second wave of
actions C2 is initiated by the leaves and also absorbed by the root. When the leaves have color
2, their neighbors can join the tree. Now, the priorities on actions prevent a false root to change
its color and, so, to absorb a color wave. Moreover, every true root can always absorb a color
wave.

Therefore, the colors of the processes in an abnormal tree eventually alternate, i.e., the
parents and their real children do not have the same color, and no more process can join the
tree: the tree is color locked. Then, the root eventually resets to a true root executing action R.

Once all abnormal trees have been removed, ` is a true root and regularly absorb color waves
allowing then the leaves of its tree to recruit processes.

Figure 10 shows an example of execution with the cleaning of an abnormal tree.
Finally, in O(n) rounds, ` is elected and a breadth-first spanning tree rooted at ` is built.

Notice that the color waves might never end. A mechanism ensure the silence of the algorithm
using the Boolean variable done and actionUD. When a process p believes that the construction
of the final tree is finished (because it can no more recruits other processes) and all its true
children q (if any) have set their variables q.done to true, p.done is set to true. Moreover, a

5.1. Overview of DLV 39

7

3

5

2

4

8

6〈1, 1〉

〈3, 0〉

〈1, 2〉

〈2, 0〉

〈8, 0〉

〈4, 0〉

〈6, 0〉

(a) Initial configuration. 1 is a
fake ID.

7

3

5

2

4

8

6〈1, 1〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

〈8, 0〉

〈4, 0〉

〈6, 0〉

(b) 2 and 3 have executed action
J and chosen 7 (of color 2) as
parent. 5 has changed its color to
2 executing action C2.

7

3

5

2

4

8

6〈7, 0〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

〈8, 0〉

〈4, 0〉

〈6, 0〉

(c) The tree of 7 was color
locked. Then, 7 executed action
R.

7

3

5

2

4

8

6〈7, 0〉

〈3, 0〉

〈5, 0〉

〈2, 0〉

〈8, 0〉

〈4, 0〉

〈6, 0〉

(d) 2, 3 and 5 were false roots and
have executed action R.

7

3

5

2

4

8

6〈2, 1〉

〈3, 0〉

〈2, 1〉

〈2, 0〉

〈2, 1〉

〈2, 1〉

〈2, 1〉

(e) 4, 5, 6, 7 and 8 have executed
action J and chosen 2 as parent.

7

3

5

2

4

8

6〈2, 1〉

〈3, 0〉

〈2, 1〉

〈2, 0〉

〈2, 1〉

〈2, 1〉

〈2, 1〉

(f) 3 cannot join the tree of 2 be-
cause all its neighbors have color
1. 2 has changed its color to 1 by
executing action C1.

7

3

5

2

4

8

6〈2, 1〉

〈3, 0〉

〈2, 1〉

〈2, 0〉

〈2, 1〉

〈2, 1〉

〈2, 1〉

(g) 4,5,6,7 and 8 have changed
their color to 2 by executing ac-
tion C2.

7

3

5

2

4

8

6〈2, 1〉

〈2, 2〉

〈2, 1〉

〈2, 0〉

〈2, 1〉

〈2, 1〉

〈2, 1〉

(h) Then, 3 was able to execute
action J and join the tree of 2.

Figure 10: Example of execution of algorithm DLV . The ID is represented inside the node.
The label next to a node shows its key. The arrows represent parent pointers. No arrow exits a
node if its parent is itself. The filling represents the color: gray for 1 and white for 2.

40 Chapter 5. Step Complexity of Algorithm DLV

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
Layer 1

Layer 2

Layer 3

Layer 4

Figure 11: Initial configuration. The leader of a process is 0 if it gets a star or its own ID
otherwise. level is not represented as it is always correct.

true root r cannot change its color if r.done holds. We said that r is color frozen. Thus, after the
completion of the final tree construction, the value true is propagated bottom-up in the tree
into the done variables, and in O(D) rounds, the system reaches a terminal configuration.

5.2 Example in Ω(n4) steps
We consider a network made of n = L×β processes withL = 8 and β ≥ 2: p(1,1), p(1,2), . . . ,

p(1,β), p(2,1), p(2,2), . . . , p(2,β), . . . , p(8,1), p(8,2), . . . , p(8,β) such that the ID of p(i,j) is (i − 1)β +
j,∀i ∈ [1 . . . 8],∀j ∈ [1 . . . β]. Notice that 0 is a fake ID smaller than every ID in the network.

Figure 11 shows the structure of the network and the initial configuration. In details, the
processes form β columns: ∀i ∈ [2 . . . 8],∀j ∈ [1 . . . β], {p(i−1,j), p(i,j)} ∈ V . Moreover, there
are three complete bipartite subgraphs: ∀j ∈ [1 . . . β], ∀j′ ∈ [1 . . . β], j′ 6= j, {p(4,j), p(5,j′)},
{p(6,j), p(7,j′)} and {p(7,j), p(8,j′)} are in V . These bipartite subgraphs split the network in four
layers:

– Layer 1: line 8
– Layer 2: line 7
– Layer 3: lines 5 and 6
– Layer 4: lines 1 to 4
We choose the following initial configuration.
– For i ∈ [1 . . . 8], j ∈ [1 . . . β], p(i,j).leader = 0, p(i,j).level = i and p(i,j).done = false
– For j ∈ [1 . . . β],

– p(1,j).parent = p(1,j)
– p(5,j).parent = p(4,1)
– p(7,j).parent = p(6,1)
– p(8,j).parent = p(7,1)
– For i ∈ [2 . . . 4] ∪ {6}, p(i,j).parent = p(i−1,j)

5.3. Generalization to an example in Ω(nα+1) steps 41

– For i ∈ [1 . . . 8], p(i,1).color = (i mod 2) + 1
– For j ∈ [2 . . . β],

– p(8,j).color = 1
– For i ∈ [1 . . . 7], p(i,j).color = 2

We consider an unfair daemon which selects the enabled processes according to function
DAEMON given in Algorithm 3. In this algorithm , top(i) (respectively bottom(i)) is the number
of the first line (respectively last line) of layer i. More precisely:

top(i) = L− 2i−1 + 1

bottom(i) =

{
top(1) if i = 1

top(i− 1)− 1 if i > 1

In BUILD(layer, column), all the processes of lines top(layer) to 8 execute line by line
action J . Notice that the processes of line top(layer) choose p(top(layer)−1,column) as parent. In
RESET(layer, column), processes p(top(layer+1),column) to p(bottom(layer+1),column) execute action
R (except for layer 1 where all the processes of line 8 also execute action R). Then, RE-
SET(layer − 1, i) and BUILD(layer − 1, i + 1) are called for each column i = 1 . . . β − 1.
Finally, RESET(layer − 1, β) is executed.

The idea is to reset a branch of the tree and then, rebuild symmetrically the tree on the next
column: a process chooses as parent the neighbor of smaller key, i.e., the extreme left neighbor
one line above having 0 as leader. More precisely, a first sequence of actions R resets the
first column and the layer 1 (Figure 12). Then, the layer 1 is rebuilt on the second column
(BUILD(1,2)) and reset again (Figure 13) and so forth until the last column. Then, the tree is
rebuilt since the second layer on the second column (BUILD(2,2)) and the extreme left branch
is reset (Figure 14) and so on.

To better understand the algorithm with its numerous recursive calls, a step by step execution
of function DAEMON is provided in Appendix A. The reader can follow the execution on an
empty figure given with the listing.

We count how many times processes p(8,.) executes action R:
– Each process p(8,.) executes once action R in RESET(layer, column), when layer = 1

(line 15 of Algorithm 3): at least β processes execute action R.
– RESET(3, column) is called β times by DAEMON.
– RESET(2, column) is called β times by RESET(3, column).
– RESET(1, column) is called β times by RESET(2, column).

Hence, action R is executed β4 times by the processes of line 8. Now, β = n/8. Hence we can
conclude:

Theorem 12. For every β ≥ 2, there exists a network of n = 8 × β processes in which there
exists a possible execution that stabilizes in Ω(n4) steps.

5.3 Generalization to an example in Ω(nα+1) steps
Starting from Eα (α ≥ 4), an example in Ω(nα) steps, we can build Eα+1, an example in

Ω(nα+1) steps, based on the same principle as in Subsection 5.2, by adding a layer. If Eα has
Lβ processes p(i,j) (1 ≤ i ≤ L, 1 ≤ j ≤ β), then Eα+1 has L′ = 2L lines of β processes q(i′,j′)
(1 ≤ i′ ≤ L′, 1 ≤ j′ ≤ β). The construction principle is as follows:

42 Chapter 5. Step Complexity of Algorithm DLV

Algorithm 3 Algorithm of the daemon.
1: function DAEMON
2: for i = 1 . . . β, (i+ +) do
3: RESET(3,i);
4: if i < β then
5: BUILD(3,i+1);
6: end if
7: end for
8: end function

9: function RESET(layer, column)
10: for i = top(layer + 1) . . . bottom(layer + 1), (i+ +) do
11: p(i,column) executes R;
12: end for
13: if layer = 1 then
14: for j = 1 . . . β, (j + +) do
15: p(L,j) executes R; . Reset of layer 1, L = top(1) = 8

16: end for
17: else
18: for j = 1 . . . β, (j + +) do
19: RESET(layer − 1, j);
20: if j < β then
21: BUILD(layer − 1, j + 1);
22: end if
23: end for
24: end if
25: end function

26: function BUILD(layer, column)
27: for i = top(layer) . . . bottom(layer), (i+ +) do
28: for j = 1 . . . β, (j + +) do
29: p(i,j) executes J ;
30: end for
31: for k = i− 1 . . . 2(i− L

2), (k −−) do
32: if k ≥ top(layer) then
33: for j = 1 . . . β, (j + +) do
34: p(k,j) executes C1;
35: end for
36: else
37: p(k,column) executes C1;
38: end if
39: end for
40: for k = i . . . 2(i− L

2) + 1, (k −−) do
41: if k ≥ top(layer) then
42: for j = 1 . . . β, (j + +) do
43: p(k,j) executes C2;
44: end for
45: else
46: p(k,column) executes C2;
47: end if
48: end for
49: end for
50: if layer > 1 then
51: BUILD(layer − 1, 1);
52: end if
53: end function

5.3. Generalization to an example in Ω(nα+1) steps 43

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

R
ac

tio
ns

(a) Initial configuration.

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

*

*

*

*

*

*

*

*

*

*

*

*

*

*

(b) Reset of the left column and the layer 1.

Figure 12: First sequence of actions R.

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

R
ac

tio
ns

(a) BUILD(1,2)

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

*

*

*

*

*

*

*

*

*

*

*

*

*

(b) Reset.

Figure 13: Reconstruction of the layer 1 on the second column and reset.

44 Chapter 5. Step Complexity of Algorithm DLV

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

R
ac

tio
ns

(a) BUILD(2,2)

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

*

*

*

*

*

*

*

*

*

*

*

*

(b) Reset.

Figure 14: Reconstruction of the layer 2 on the second column and reset.

1. We increase the level and the ID of the Lβ processes of Eα as follows: ∀i ∈ [1 . . . L],
∀j ∈ [1 . . . β], q(i+L,j) = p(i,j). The ID of q(i+L,j) becomes (i + L − 1)β + j and
q(i+L,j).level = i+L. The value of variables color and done do not change. If i 6= 1, the
parent remains the same. Otherwise, see step 3.

2. At the top of Eα, we add L lines of β processes. These new processes satisfy:
– ∀i ∈ [1 . . . L],∀j ∈ [1 . . . β], q(i,j).id = (i− 1)β + j, q(i,j).leader = 0, q(i,j).level = i

and q(i,j).done = false.
– ∀i ∈ [2 . . . L],∀j ∈ [1 . . . β], {q(i−1,j), q(i,j)} ∈ V and q(i,j).parent = q(i−1,j).
– ∀j ∈ [1 . . . β], q(1,j).parent = q(1,j).
– ∀j ∈ [2 . . . β],∀i ∈ [1 . . . L], q(i,j).color = 2.
– ∀i ∈ [1 . . . L], q(i,1).color = (i mod 2) + 1.

3. The former first line ofEα becomes a new bipartite complete subgraph with the last added
line:
– ∀j ∈ [1 . . . β],∀j′ ∈ [1 . . . β], {q(L,j), q(L+1,j′)} ∈ V .
– ∀j ∈ [1 . . . β], q(L+1,j).parent = q(L,1).

Figure 15 shows the structure of the network for E5 and its initial configuration.
Then, the daemon selects processes according to function DAEMON(α+1) (see Algorithm 4)

which is the generalization of the algorithm presented in section 5.2. In Eα, processes p(L,.)
execute βα times action R. Now, we added a new level of recursion. Then, processes q(L′,.)

execute βα+1 times action R. β = n
L′ hence the execution lasts Ω(nα+1) steps. Hence, we

obtain:

Theorem 13. For every α ≥ 3, for every β ≥ 2, there exists a networkEα+1 of n = 2α−3×8×β
processes in which there exists a possible execution that stabilizes in Ω(nα+1) steps.

5.3. Generalization to an example in Ω(nα+1) steps 45

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

9,1

10,1

11,1

12,1

13,1

14,1

15,1

16,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

9,2

10,2

11,2

12,2

13,2

14,2

15,2

16,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1,β

2,β

3,β

4,β

5,β

6,β

7,β

8,β

9,β

10,β

11,β

12,β

13,β

14,β

15,β

16,β

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Processes of Eα = E4

L = 8 new lines

Eα+1 = E5

L′ = 2L = 16

Figure 15: Initial configuration of the example in O(n5) steps.

Algorithm 4 Generalization of the algorithm of the daemon for Eα+1.
1: function DAEMON(α+ 1)
2: for i = 1 . . . β, (i+ +) do
3: RESET(α,i); . See Algorithm 3
4: if i < β then
5: BUILD(α,i+1); . See Algorithm 3
6: end if
7: end for
8: end function

6

Conclusion

We proposed a silent self-stabilizing leader election algorithm, called LE , for bidirectional
connected identified networks of arbitrary topology. Starting from any arbitrary configuration,
LE converges to a terminal configuration, where all processes know the ID of the leader, this lat-
ter being the process of minimum ID. Moreover, as in most of the solutions from the literature,
a distributed spanning tree rooted at the leader is defined in the terminal configuration.
LE is written in the locally shared memory model. It assumes the distributed unfair daemon,

the most general scheduling hypothesis of the model. Moreover, it requires no global knowl-
edge on the network (such as an upper bound on the diameter or the number of processes, for
example). LE is asymptotically optimal in space, as it requires Θ(log n) bits per process, where
n is the size of the network. We analyzed its stabilization time both in rounds and steps. We
showed that LE stabilizes in at most 3n + D rounds, where D is the diameter of the network.
We also proved that for every n ≥ 4, for every D, 2 ≤ D ≤ n − 2, there is a network of n
processes, in which a possible execution exactly lasts this complexity.

Finally, we proved thatLE achieves a stabilization time polynomial in steps. More precisely,
its stabilization time is at most n

3

2
+ 2n2 + n

2
+ 1 steps. Then, we showed for every n ≥ 4, that

there exists a network of n processes, in which a possible execution exactly lasts n3

6
+ 5

2
n2 −

11
3
n+ 2 steps, establishing then that the worst case is in Θ(n3).

For fair comparison, we studied the step complexity of the previous best algorithm with
similar settings (i.e., it does not use any global knowledge and is proven assuming an unfair
daemon) given in [9] and called hereDLV . We showed that for a given α ≥ 3, for every β ≥ 2,
there exists a network of n = 2α × β processes in which there is an execution that stabilizes in
Ω(nα+1). In other words, the stabilization time of DLV in steps is not polynomial.

We have also implemented LE in a high-level simulator to empirically evaluate its average
performances. Experimental results tend to show that its worst case in terms of rounds (Θ(3n+
D) rounds) is rare. Nevertheless, this work is still in progress. The experimentation protocol
and some results are given in Appendix B.

Perspectives of this work deal with complexity issues. In [9], Datta et al showed that it
is easy to implement a silent self-stabilizing leader election which works assuming an unfair
daemon, uses Θ(log n) bits per process, and stabilizes in O(D) rounds (where D is an upper
bound on D), yet if processes have knowledge of D. Now, it is worth investigating if it is
possible to design an algorithm which works assuming an unfair daemon, uses Θ(log n) bits
per process, and stabilizes in O(D) rounds without using any global knowledge. We believe
this problem remains difficult, even adding some fairness assumption.

Bibliography

[1] Yehuda Afek and Anat Bremler-Barr. Self-Stabilizing Unidirectional Network Algorithms
by Power Supply. Chicago J. Theor. Comput. Sci., 1998, 1998.

[2] Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex Networks.
CoRR, cond-mat/0106096, 2001.

[3] Anish Arora and Mohamed G. Gouda. Distributed Reset. IEEE Trans. Computers,
43(9):1026–1038, 1994.

[4] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Vargh-
ese. Time Optimal Self-stabilizing Synchronization. In Proceedings of the Twenty-Fifth

Annual ACM Symposium on Theory of Computing (STOC), pages 652–661, 1993.

[5] Janna Burman and Shay Kutten. Time Optimal Asynchronous Self-stabilizing Spanning
Tree. In Distributed Computing, 21st International Symposium (DISC), pages 92–107,
2007.

[6] Ernest J. H. Chang. Echo Algorithms: Depth Parallel Operations on General Graphs.
IEEE Trans. Software Eng., 8(4):391–401, 1982.

[7] Ajoy Kumar Datta, Lawrence L. Larmore, and Hema Piniganti. Self-stabilizing Leader
Election in Dynamic Networks. In Stabilization, Safety, and Security of Distributed Sys-

tems - 12th International Symposium (SSS), pages 35–49, 2010.

[8] Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Vemula. An O(n)-time Self-
stabilizing Leader Election Algorithm. J. Parallel Distrib. Comput., 71(11):1532–1544,
2011.

[9] Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-stabilizing
Leader Election in Optimal Space under an Arbitrary Scheduler. Theor. Comput. Sci.,
412(40):5541–5561, 2011.

[10] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Commun.

ACM, 17(11):643–644, 1974.

[11] Shlomi Dolev. Self-stabilization. MIT Press, March 2000.

[12] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory Requirements for
Silent Stabilization. Acta Inf., 36(6):447–462, 1999.

50 Bibliography

[13] Shlomi Dolev and Ted Herman. Superstabilizing Protocols for Dynamic Distributed Sys-
tems. Chicago J. Theor. Comput. Sci., 1997, 1997.

[14] Mark L Huson and Arunabha Sen. Broadcast Scheduling Algorithms for Radio Networks.
In Military Communications Conference, 1995. MILCOM’95, Conference Record, IEEE,
volume 2, pages 647–651, 1995.

[15] Alex Kravchik and Shay Kutten. Time Optimal Synchronous Self Stabilizing Spanning
Tree. In DISC, pages 91–105, 2013.

[16] Adrian Segall. Distributed Network Protocols. IEEE Transactions on Information Theory,
29(1):23–34, 1983.

A

E4 step by step

In this chapter , we detail an execution of DLV in E4 following DAEMON (see Algo. 3)
for any β (Listing A.1) and for β = 3 (Listing A.2). With this latter, we provide an “empty”
representation of the network that can be used by the reader (Fig. 16).

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

1,3

2,3

3,3

4,3

5,3

6,3

7,3

8,3

Figure 16: Empty representation of the network for E4 with β = 3. The reader can use it to
follow the step by step execution.

52 Appendix A. E4 step by step

Listing A.1: Step by step execution of DLV in E4 following DAEMON

//Reset(3,.) is called β times
Reset(3,1){

//Reset(3,1) calls β times Reset(2,.)
(1,1),(2,1),(3,1),(4,1) execute R
Reset(2,1){

//Reset(2,1) calls β times Reset(1,.)
(5,1),(6,1) execute R
Reset(1,1){

//(8,.) executes β times R in Reset(1,1)
(7,1) executes R
(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J
}
Reset(1,2){

(7,2) executes R
(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
Build(2,2){

(7,1),(7,2),...,(7,β) execute J
(6,2) executes C1
(7,1),(7,2),...,(7,β) execute C2
Build(1,1){

(8,1),(8,2),...,(8,β) execute J
}

}
Reset(2,2){

(5,2),(6,2) execute R
Reset(1,1){

(7,1) executes R
(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J
}
Reset(1,2){

(7,2) executes R
(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
(...)
Build(2,β)
Reset(2,β)

}
Build(3,2){

(5,1),(5,2),...,(5,β) execute J
(4,2),(3,2),(2,2) execute C1
(5,1),(5,2),...,(5,β) execute C2
(4,2),(3,2) execute C2
(6,1),(6,2),...,(6,β) execute J
(5,1),(5,2),...,(5,β) execute C1
(4,2) executes C1
(6,1),(6,2),...,(6,β) execute C2

(5,1),(5,2),...,(5,β) execute C2
Build(2,1){

(7,1),(7,2),...,(7,β) execute J
(6,1) executes C1
(7,1),(7,2),...,(7,β) execute C2
Build(1,1){

(8,1),(8,2),...,(8,β) execute J
}

}
}
Reset(3,2){

(1,2),(2,2),(3,2),(4,2) execute R
Reset(2,1){

(5,1),(6,1) execute R
Reset(1,1){

(7,1) executes R
(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J
}
Reset(1,2){

(7,2) executes R
(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
Build(2,2){

(7,1),(7,2),...,(7,β) execute J
(6,2) executes C1
(7,1),(7,2),...,(7,β) execute C2
Build(1,1){

(8,1),(8,2),...,(8,β) execute J
}

}
Reset(2,2){

(5,2),(6,2) execute R
Reset(1,1){

(7,1) executes R
(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J
}
Reset(1,2){

(7,2) executes R
(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
(...)
Build(2,β)
Reset(2,β)

}
(...)
Build(3,β)
Reset(3,β)

53

Listing A.2: Step by step execution of DLV in E4 with β = 3 following DAEMON

(1,1) executes R
(2,1) executes R
(3,1) executes R
(4,1) executes R
(5,1) executes R
(6,1) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(7,1),(7,2),(7,3) execute J
(6,2) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(5,2) executes R
(6,2) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(7,1),(7,2),(7,3) execute J
(6,3) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(5,3) executes R
(6,3) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(5,1),(5,2),(5,3) execute J
(4,2) executes C1
(3,2) executes C1
(2,2) executes C1
(5,1),(5,2),(5,3) execute C2
(4,2) executes C2
(3,2) executes C2
(6,1),(6,2),(6,3) execute J
(5,1),(5,2),(5,3) execute C1
(4,2) executes C1
(6,1),(6,2),(6,3) execute C2

(5,1),(5,2),(5,3) execute C2
(7,1),(7,2),(7,3) execute J
(6,1) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(1,2) executes R
(2,2) executes R
(3,2) executes R
(4,2) executes R
(5,1) executes R
(6,1) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(7,1),(7,2),(7,3) execute J
(6,2) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(5,2) executes R
(6,2) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(7,1),(7,2),(7,3) execute J
(6,3) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(5,3) executes R
(6,3) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(5,1),(5,2),(5,3) execute J
(4,3) executes C1
(3,3) executes C1
(2,3) executes C1
(5,1),(5,2),(5,3) execute C2
(4,3) executes C2

(3,3) executes C2
(6,1),(6,2),(6,3) execute J
(5,1),(5,2),(5,3) execute C1
(4,3) executes C1
(6,1),(6,2),(6,3) execute C2
(5,1),(5,2),(5,3) execute C2
(7,1),(7,2),(7,3) execute J
(6,1) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(1,3) executes R
(2,3) executes R
(3,3) executes R
(4,3) executes R
(5,1) executes R
(6,1) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(7,1),(7,2),(7,3) execute J
(6,2) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(5,2) executes R
(6,2) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R
(7,1),(7,2),(7,3) execute J
(6,3) executes C1
(7,1),(7,2),(7,3) execute C2
(8,1),(8,2),(8,3) execute J
(5,3) executes R
(6,3) executes R
(7,1) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,2) executes R
(8,1),(8,2),(8,3) execute R
(8,1),(8,2),(8,3) execute J
(7,3) executes R
(8,1),(8,2),(8,3) execute R

B

Experimentation

In this appendix, we evaluate the average performances of algorithmLE . We ran simulations
on two different kinds of random graphs: Barabási-Albert graphs and Unit Disk Graphs. This
work is still in progress.

B.1 Graph models
The Barabási-Albert model [2] generates random scale-free networks (i.e., networks with

a power-law degree distributions) similar to a lot of actual systems, the Internet for example.
It models preferential attachment: a node with high degree receives new links with a bigger
probability than a node with smaller degree.

In a Unit Disk Graph (UDG) [14], a node is connected with all the other nodes in a disk
around it. In other words, two nodes are connected if and only if the Euclidean distance between
them is smaller than some radius. Wireless sensor networks can be roughly modeled using UDG
where the radius of the disk is the transmission range of the sensor emitter.

B.2 Experimentation Protocol
For each kind of graph, we generated a pool of ten random graphs of n = 1000 nodes for

each value of the diameter (between 2 and 14 for Barabási-Albert graphs, between 4 and 27 for
UDGs).

We use a simulator dedicated to locally shared memory model. We execute LE five times
on each graph of the pool, until the confidence interval is smaller than 2% of the average sta-
bilization time in round. The daemon used (for the moment) is randomly uniform: an enabled
node is chosen with probability 1

2
.

The initialization of the processes is also randomized:
– The number of fake ids smaller than `, denoted nf is uniformly chosen between 0 and

10% of n.
– Each process has a unique random id between nf and n+ nf − 1.
– nf processes (uniformly chosen) have a random idR between 0 and nf − 1. The other

processes have a random idR between nf and n+ nf .
– The par pointer is uniformly chosen among the neighbors of the node and itself.
– The level is uniformly chosen between 0 and an arbitrary value.
– The status is uniformly chosen.

B.3 Results
An experimental analysis was realized to evaluate the average performances of LE in terms

of rounds. For example, Figure 17 shows experimental results for Barabási-Albert graphs.
The average stabilization time in rounds is drastically smaller (the order of magnitude is the
diameter) than the analytical bound in the worst case of Θ(3n + D) rounds. So the worst
case seems to be rare in this class of graph. We speculate that the different behavior observed
for small diameters (between 2 and 7) is a consequence of the high density of those graphs.

56 Appendix B. Experimentation

0

5

10

15

20

25

2 4 6 8 10 12 14

R
ou

nd
s

D

Average stabilization time
Confidence interval

D

Figure 17: Average stabilization time in rounds for Barabási-Albert graphs (n = 1000).

10

15

20

25

30

35

5 10 15 20 25

R
ou

nd
s

D

Average stabilization time
Confidence interval

D

Figure 18: Average stabilization time in rounds for UDGs (n = 1000).

Nevertheless this conjecture requires much more investigation. The same conclusions ensue
from the experimental results on UDGs (see Figure 18).

Other experiments have been done by inserting faults in a terminal configuration in order
the impact of the number of faults on the stabilization time.

Again, this work needs further investigation, in particular using more realistic daemons.

