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Abstract
In this document, we introduce an event-based boundary control approach for 1-dimensional
linear hyperbolic systems. A preliminary study of event-based control theory of finite dimen-
sional systems was carried out. Simultaneously, classical techniques for stabilization of linear
hyperbolic systems were studied. By following the main ideas for event-based already devel-
oped for finite-dimensional systems, an extension to infinite case, via Lyapunov techniques,
was done. The main contribution lies in the definition of two event-triggering conditions,
which turned out to be appropriate, reducing number of execution times while preserving a
good level of performance. Some numerical examples are illustrated to validate the theoretical
results.

Resumé
Dans ce document on introduit une approche de commande sur la frontière basée sur des
événements pour des systèmes linéaires hyperboliques dans un dimension. Une étude préliminaire
de cette commande a été faite pour les systèmes de dimension fini. Des études sur les tech-
niques classiques pour le stabilisation des systèmes hyperboliques linéaires ont été faites en
même temps. Puis, avec les idées principales, une extension pour le cas infini en utilisant les
techniques de Lyapunov a été effectuée. La contribution principale dépend sur la définition
de deux conditions de déclenchement, qui sont devenues propre, en diminuant le nombre des
exécution et préservant un bon niveau de performance. Quelques exemples numériques sont
illustrés avec leur résultats correspondant.
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1.INTRODUCTION

1 Introduction
Event-based control is a computer control strategy recently developed for finite dimensional
systems aiming to efficiently use communications and computational resources. In particular,
it arises in the context of Networked Control Systems. In fact, the increasing popularity of
wired and wireless network control systems has led to highlight the importance of address-
ing energy, computational and communication constraints when defining feedback control
loops [28] [15]. In addition, traditionally digital control techniques often assume that con-
trollers execute periodically but it may result in unnecessary workloads when computational
and communication resources may be devoted to other tasks [12]. Therefore, event-based
control could be useful to deal with such situations. Specially, when control actions are ex-
pensive and the need to relax periodicity of computations and as a consequence to reduce
the processor usage, is required. Event-based control is actually an alternative relying on
aperiodic sampling where the inputs of the system are updated only when some events are
generated.

Literature states contributions on event-based control, since the appearance of first papers
[3], [36] and [4] up to some recent ones [34], [2], [15], [11], [28], [12] and [21] among others.
We can find advantages of this strategy such as the fact that events are generated (different
event algorithms are investigated) reducing the number sampling instants for the same final
performance. Nevertheless, there exist few theoretical results about stability, convergence
and performance.

One the other hand, many physical systems having an engineering interest are described
by partial differential equations (PDEs). Actually, a large number of mathematical models in
applied sciences are given by PDEs. Such systems are also called infinite-dimensional systems
or distributed parameter systems due to fact that the state-space is infinite-dimensional or
distributed. For a class of them, hyperbolic systems (both of conservation laws and of balance
laws) stand out having important applications in modelling and control of physical networks.
For example, hydraulic networks (shallow water (Saint-Venant) equations for open channels),
road traffic networks (Aw-Rascle equations), gas pipeline networks (Euler equations for gas
flow) are mostly considered in literature.

Concerning the control, several results are available for hyperbolic systems. For example,
boundary control using backstepping [17] and [18]. Lyapunov techniques are used for the
stability analysis; see for instance [6], [7], [10], [9]. Further contributions for stabilization of
hyperbolic systems by means of Lyapunov techniques can be found in [26], [25], [35], [23]
and [24]. The last reference is mainly the one we have studied. It will be followed throughout
this document.

Due to the distributed nature of state space in hyperbolic systems, it is common for
most of applications to have sensors and actuators available both distributed and in the
boundary. Then, it is again a problem of networked control systems where the need to reduce
communications and computational costs is a central issue. So, event-based control could be
a good solution. However, event-based control theory for infinite-dimensional systems is not
well developed. Therefore, this is a strong motivation to try to apply this new control strategy
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1.INTRODUCTION

to such systems. This is the objective of our project and core of the document. We aim then
at proposing an approach which combines what is already done of event-based control for
finite-dimensional systems with classical boundary control (Lyapunov techniques) of linear
hyperbolic systems. This is indeed an emerging field which is worth deeply researching.

This document is organized as follows: In Section 2, the basic ideas of event-based con-
trol issues are presented. Input-to.state-stability as well as control Lyapunov function are
introduced so as to define two triggering conditions. One numerical example is illustrated
for which a brief introduction of hybrid systems was carried out. In Section 3 we present
our main contribution: by extending the notions given in Section 2, two triggering condition
were defined. Several numerical examples are illustrated showing the validity of our results.
Finally, conclusions and perspectives are given in Section 4.

2



2.EVENT-BASED CONTROL OF FINITE-DIMENSIONAL SYSTEMS

2 Event-based control of finite dimensional systems
Event-based control, also called event-triggered control, contrary to traditional computer
control systems where sampling is periodic, relies on aperiodic sampling. This sampling
strategy updates the control value only when the system needs attention (i.e when an event
occurs). For example, if we think in terms of trajectories (or solutions), the event algorithm
updates the control only when they present significant changes or just when for instance, the
state deviates more than a certain threshold from a desired value. Two elements are essential
in this framework: the first one is the traditional feedback controller that computes the control
input, and the second one, a trigger algorithm or mechanism which verifies a condition (called
either triggering condition or event condition) such that when such a condition is violated,
an event is triggered or generated.

Triggering conditions are namely related to stability-performance. Therefore, the use of
Lyapunov techniques as well as input-to-state stability (ISS) issues are useful to define suit-
able triggering conditions.

In this section we introduce the main concepts of event-based control for finite-dimensional
systems by mainly following [34], [12] and [21].

Let us consider a control system of the form:

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (2.1)

being f : Rn → Rm Lipschitz continuous on compacts, for which a feedback controller

u = k(x) (2.2)

has been designed such that the closed loop system

ẋ = f(x, k(x + e)) (2.3)

is input-to-state stable (ISS) with respect to measurements errors e ∈ Rn. Further details
about ISS notions and ISS-Lyapunov function can be found in Apendix B.1. For the sequel,
a characterization ISS-Lyapunov function is needed.

Definition 1. [34] A smooth function V : Rn → R+
0 is said to be an ISS- Lyapunov function

for the closed-loop system (2.3) if there exist class K∞ functions α, α, α and γ satisfying for
all x, e ∈ Rn

α(‖x‖) ≤ V (x) ≤ α(‖x‖)

∇V (x) · f(x, k(x + e)) ≤ −α(‖x‖) + γ(‖e|).

Typically, the implementation of the feedback law u = k(x) on a digital platform is carried
out by sampling the state at instants t0, t1, t2, ... so that the actual control input is given by
u(ti) = k(x(ti)), ∀t ∈ [ti, ti+1), i ∈ I. Thus, the sequence {ti}i∈I of sampling instants are
the execution times at which the control input is computed and updated (between actuator
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2.EVENT-BASED CONTROL OF FINITE-DIMENSIONAL SYSTEMS

updates, the input value u is held constant). Sequence of sampling instants {ti}i∈I is typically
periodic, i.e ti+1 − ti = T where T > 0 is the period; but in our framework, it is no longer a
periodic sequence. In addition, if there is an infinite number of executions, then I = N [12].

Let us now define the measurement error e, associated with the ith sampling time as
e : [ti, ti+1) → Rn in which

e(t) = x(ti) − x(t), ∀t ∈ [ti, ti+1) (2.4)

The sampled data system controller uses x(ti) = e(t) + x(t) rather than x(t). Then the
sampled data system state must satisfy

ẋ(t) = f(x(t), k(x(ti))) = f(x(t), k(x(t) + e(t))) ∀t ∈ [ti, ti+1)

which is indeed the closed-loop system (2.3) we want to deal with.
In event-based control, the execution times are triggered by events that are generated

according to some execution rule given by a suitable condition. The set of triggering times
{ti}i∈I can be formally defined by

t0 = 0, ti+1 = inf{t > ti| some execution rule}

One of the most important issues in event-based control is the existence of a minimal
inter-execution time or minimal inter-event time, i.e some bound τ > 0 such that the
sequence {ti}i∈I satisfies

ti+1 − ti ≥ τ (2.5)

If the minimal inter-event time is zero, then an event-triggered implementation will require
faster and faster updates and thus cannot be implemented on a digital platform [15]. This is
precisely the so-called Zeno phenomena. The proof of the existence of such a τ > 0 is given
in [34] (see also [1] and [19] for further details).

In addition, it is defined in [21] an event function ev : Rn × Rn → R that indicates if
one needs (ev ≤ 0) or not (ev ≥ 0) to update the control value. Event function ev takes
the current state x(t) as input and a memory m = x(ti) of the state last time when it was
necessary to update the control (i.e when an event happened). By linking with notation
presented above, it is clear that m = x(ti) = e(t) + x(t). In that work, a universal formula
for event-based stabilization of general nonlinear affine in the control is proposed, where the
event function is related directly to the time derivative of a Control Lyapunov function. Zeno
phenomena is avoided since the existence of the minimal inter-execution time is also proven.

Equipped with all previous preliminary notions, appropriate triggering conditions will be
presented. This is the aim of the next two subsections.

2.1 ISS-based triggering condition
Under the ISS assumption aforementioned, we know that

V̇ ≤ −α(‖x‖) + γ(‖e‖)

4
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If we restrict the error or actually the “ gap ” γ(‖e‖) so that for some σ ∈ (0, 1)

γ(‖e‖) ≤ σα(‖x‖) (2.6)

we get

V̇ ≤ − α(‖x‖) + σα(‖x‖)
= (σ − 1)α(‖x‖)

which guarantees that x(t) converges asymptotically to the the origin. The level of per-
formance can be adjusted using the parameter σ, in such a way that when σ approaches
0, the performance of the closed loop system approaches the system when e(t) = 0 for all
t ∈ R+

0 [12].
Inequality (2.6) can be enforced by executing the control task when:

γ(‖e‖) ≥ σα(‖x‖) (2.7)

The triggering condition is therefore (2.7) and ti as we stated previously becomes:

t0 = 0, ti+1 = inf{t ∈ R|t > ti ∧ γ(‖e‖) ≥ σα(‖x‖)}

The time evolution of both the threshold α(‖x‖) and the gap γ(‖e‖) are shown in Fig.
1. The central idea can be explained as follows (see [19]): At the beginning of the interval
[ti, ti+1), e(ti) = x(ti)−x(ti) = 0. After that, the norm of the error increases. When condition
(2.7) is satisfied, i.e γ(‖e‖) > σ(‖α‖), then the system state is again sampled, and therefore
we enforce the error to zero again. It is important to emphasize that the event function
defined by inequality (2.6) is continuously monitored. Actually, this is a particular feature
of event-triggered control that differs of self-triggered control (subject which is beyond the
scope of this document).

Finally, it is worth remarking that the decreasing of the Lyapunov function together with
the existence of a minimal inter-execution time implies the asymptotic stability of the closed
loop systems [12]. As a mater of fact, that study is the main contribution in [34].

The triggering condition that we have just presented, will be useful when extending the
event-based control formulation to linear hyperbolic systems as we will deal with in Section
3.

2.2 V̇ -based triggering condition
Based on the work in [21], we want to particularly point out that the event function is given
by

ev(x, m) = −V̇1 + σ̃V̇2 (2.8)

for some σ̃ ∈ [0, 1). V̇1 is the value of the time derivative of a control Lyapunov function (V̇ )
when applying u = k(m). V̇2 is the value of V̇ if u = k(x) is applied instead of k(m). The
triggering condition can be seen in the following:

t0 = 0, ti+1 = inf{t ∈ R|t > ti ∧ V̇1 ≥ σ̃V̇2}
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Figure 1: Trajectories of the gap and threshold

In order to understand the concept and where the idea comes from, let us present the sub-
sequent simple analysis which does need ISS assumptions. Also, an numerical example illus-
trating the idea will be provided in next subsection.

Let us consider a linear system
ẋ = Ax + Bu (2.9)

where x ∈ Rn and u ∈ Rm. A feedback controller u = Kx is proposed rendering the closed-
loop system globally asymptotically stable. This implies the existence of a Lyapunov function
V (x) = xT P x where P is a symmetric positive definite matrix such that

V̇ (x) =
∂V
∂x

(A + BK)x = −xT Qx (2.10)

where Q is a symmetric positive matrix. Hence, V decreases, and the rate at which it
decreases is specified by matrix Q. As it is stated in [15], if we are willing to tolerate a slower
rate of decrease, we would require the solution of an event-based implementation to satisfy
the weaker inequality

V̇ (x(t)) ≤ −σ̃xT (t)Qx(t) (2.11)

for some σ̃ ∈ [0, 1). The requirement (2.11) suggests that we only need to recompute u = Kx
and update the actuator when (2.11) is violated, i.e. V̇ (x) ≥ −σ̃xT Qx.

Now, by introducing again the error e defined by e(t) = x(ti) − x(t) ∀t ∈ [ti, ti+1), we
know that the evolution of the closed-loop system during the interval [ti, ti+1) is

ẋ(t) = Ax(t) + BKx(ti)

= Ax(t) + BK(x(t) + e(t))

6



2.EVENT-BASED CONTROL OF FINITE-DIMENSIONAL SYSTEMS

therefore, rewriting the time derivative of V yields the following:

V̇ (x(t)) =
∂V
∂x

(A + BK)x(t) +
∂V
∂x

BKe(t)

= −xT (t)Qx(t) + 2xT (t)P BKe(t) (2.12)

Now, let us specifically remark that the above expression (2.12) is the value of the
time derivative when applying u = k(x + e) = km. In that sense, in (2.12), V̇1 = V̇ =
−xT (t)Qx(t)+2xT (t)P BKe(t). In addition, expression (2.10) is the value of the time deriva-
tive when applying u = k(x). Then, V̇2 = −xT Qx.

Accordingly, substituting V̇1 = V̇ in inequality (2.11), we have

V̇1 ≤ −σ̃xT Qx = σ̃V̇2 (2.13)

Hence, when condition (2.13) is violated, an event is triggered. The event function is then
formalized as ev(x, m) = −V̇1 + σ̃V̇2.

This event function will also be useful when extending the event-based control formulation
to linear hyperbolic systems. We will take advantage of Lyapunov techniques to get the
candidate Lyapunov function and in turn its time derivative.

2.3 Hybrid system formulation and numerical example
Since event-based control systems can be regarded as a particular case of hybrid control
systems, then by means of the Matlab toolbox HyEQ presented in “A Toolbox for Simulation
of Hybrid Dynamical Systems” [27], some simulations were done. By following the framework
used in [13] and [27], let us briefly introduce what an hybrid system is about: A hybrid system
is a dynamical system with continuous and discrete dynamics. A state can both flow and
jump. A hybrid system H on a state space Rn with input space Rm is then defined by the
following objects:

• A set C ⊂ Rn × Rm called the flow set

• A function f : Rn × Rm −→ Rn called the flow map.

• A set D ⊂ Rn × Rm called the jumps set

• A function g : Rn × Rm −→ Rn called the jump map.

Hybrid system are given by hybrid equations:

H : x ∈ Rn, u ∈ Rm

{
ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D

(2.14)

Solutions are functions parametrized by hybrid time (t, j). The flow map f defines the
continuous dynamics on the flow set C, whereas the jump map g defines the discrete dynamics
on the jump set. The core of the toolbox is the HyEQsolver solver. The flows are calculated

7



2.EVENT-BASED CONTROL OF FINITE-DIMENSIONAL SYSTEMS

using the built-in ODE solver function in Matlab. If the solution leaves the flow set C, the
discrete event is detected using the function zeroevents. Once the state jumps, the next value
of the state is calculated via the jump map g using the function jump.

To be more familiar with hybrid formulation, and specially, in order to implement a
numerical example into HyEQ toolbox, we have also considered some issues condensed in [28];

The closed-loop system (2.1) in hybrid formulation [28] is

{
ẋ = f(x, s)
ṡ = 0 (x, s) ∈ F

(2.15)

{
x+ = x
s+ = u(x) = Kx (x, s) ∈ J

where F and J are the flow set and jump set respectively. s ∈ Rm represents the held value
of the control input. More precisely, s = Km where m = x + e.

In particular, according to triggering conditions previously defined, let us define F1 and
J1 for the one in Subsection 2.1 and F2 and J2 for the another one in 2.2 as follows:

F1 = {(x, s(e)) : γ(‖e‖) ≤ σα(‖x‖)} F2 =
{
(x, s) : V̇1 ≤ σ̃V̇2

}

J1 = {(x, s(e)) : γ(‖e‖) ≥ σα(‖x‖)} J2 =
{
(x, s) : V̇1 ≥ σ̃V̇2

}

With the aim at implementing an example, we will just consider F2 =
{
(x, s) : V̇1 ≤ σ̃V̇2

}

and J2 =
{
(x, s) : V̇1 ≥ σ̃V̇2

}
for the linear system (2.9) with u = kx. In this case rewriting

the closed-loop system in a hybrid framework yields:

{
ẋ = Ax + Bs
ṡ = 0 (x, s) ∈ F2

(2.16)

{
x+ = x
s+ = u(x) = Kx (x, s) ∈ J2

Now, from, (2.12) we have

V̇1 = −xT Qx + 2xT P BKe = −xT Qx + 2xT P Bs − 2xT BKx
= −xT Qx + sT BT P x + xT P Bs − 2xT P BKx

⇔ V̇1 =

[
x
s

]T [
−Q − 2P BK P B

BT P 0

] [
x
s

]
(2.17)

and from (2.10) we have
V̇2 = −xT Qx

8



2.EVENT-BASED CONTROL OF FINITE-DIMENSIONAL SYSTEMS

⇔ V̇2 =

[
x
s

]T [
−Q 0
0 0

] [
x
s

]
(2.18)

Hence, the event function which is considered when implementing in the toolbox is:

ev = −
[
x
s

]T [
−Q − 2P BK P B

BT P 0

] [
x
s

]
+ σ̃

[
x
s

]T [
−Q 0
0 0

] [
x
s

]
(2.19)

Example

Consider the linear system in [28].

[
ẋ1
ẋ2

]
=

[
0 1
0 −0.1

] [
x1
x2

]
+

[
0

−0.1

]
u stabilized by the

following linear feedback u =
[
3.75 11.75

] [
x1
x2

]
. Using V = xT P x as a Lyapunov function

with P defined by P =

[
21.213 10.843
10.843 20.666

]
. Fig. 2 shows the simulation result of the closed-loop

system using the continuous-time control and event-based control with the above V̇ -triggering
condition getting 12 execution times.
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−0.5

0

0.5

1

x 2 

(a) Time evolution of states - continuous con-
trol
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(b) Time evolution of states - event-based con-
trol
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(c) Lyapunov function - continuous control
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(d) Lyapunov function -event based control

Figure 2: Time evolution of states and Lyapunov functions.
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3 Event-based control of linear hyperbolic systems
In this section, it is intended to extend the trigerring conditions presented in Sections 2.1
and 2.2 for finite dimensional systems but now for linear hyperbolic systems.

3.1 Linear hyperbolic systems
Linear hyperbolic systems of both conservation laws1 and of balance laws (linear source term)
are considered. The sequel is based on [24]:

We will mainly deal with linear hyperbolic systems of the form2,

∂ty(t, x) + Λ∂xy(t, x) = F y(t, x) x ∈ [0, 1], t ∈ R+ (3.1)

where y : R+ × [0, 1] → Rn, F is a matrix in Rn×n, Λ is a diagonal matrix in Rn×n such that
Λ = diag(λ1, · · · , λn) with λk < 0 for k ∈ {1, ..., m} and λk > 0 for k ∈ {m + 1, ..., n}. We

use the notation y =

(
y−

y+

)
where y− : R+ × [0, 1] → Rm and y+ : R+ × [0, 1] → Rn−m. We

consider also the following boundary condition:

(
y−(t, 1)
y+(t, 0)

)
= G

(
y−(t, 0)
y+(t, 1)

)
t ∈ R+ (3.2)

where G is a matrix in Rn×n, made up of matrices G−− ∈ Rm×m, G−+ ∈ Rm×(n−m), G+− ∈

R(n−m)×m and G++ ∈ R(n−m)×(n−m) such that G =

(
G−− G−+
G+− G++

)
. System (3.1) may be

graphically represented as a feedback control system as shown in Fig. 3.

∂ty + Λ∂xy = F y

G

(
y−(t, 1)
y+(t, 0)

) (
y−(t, 0)
y+(t, 1)

)

Figure 3: The hyperbolic system (3.1) viewed as a feedback control system.

In addition, we consider the initial condition given by

y(0, x) = y0(x), x ∈ (0, 1) (3.3)

1see Appendix A.1 for a basic definition of a linear hyperbolic system of conservation laws.
2System given in Riemman coordinates.
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where y0 ∈ L2((0, 1);Rn).
It can be shown that there exists a unique solution y ∈ C0(R+;L2((0, 1);Rn)) to the

initial value problem. Since solutions may not be differentiable everywhere, notion of weak
solutions (generalized ones) of partial differential equations has to be used. In this document,
we will not enter in details about that. In [9], for instance, more details are given.

Definition 2. The linear hyperbolic system (3.1)-(3.3) is globally exponentially stable (GES)
if there exist ν > 0 and C > 0 such that, for every y0 ∈ L2((0, 1);Rn), the solution of the
initial (Cauchy) value problem (3.1)-(3.3) satisfies

‖y(t, ·)‖L2((0,1);Rn) ≤ Ce−νt‖y0‖L2((0,1);Rn) ∀t ∈ R+ (3.4)

Sufficient condition on the boundary conditions for exponential stability [7]

It is stated in [7] a sufficient condition, usually called dissipative boundary condition which
guarantees exponential stability for the System (3.1) with F sufficiently small. That sufficient
condition is therefore,

ρ1(G) = Inf
{

‖∆G∆−1‖; ∆ ∈ Dn,+
}

< 1 (3.5)

where ‖‖ denotes the usual 2-norm of matrices in Rn×n and Dn,+ denotes the set of diagonal
matrices whose elements on the diagonal are strictly positive.

A general sufficient conditions for exponential stability [24]

The following result will be useful for the subsequent work when defining event-triggering
conditions for linear hyperbolic systems of balance laws.

Proposition 1. Let us assume that there exist ν > 0, µ ∈ R and symmetric positive definite
matrices Q− ∈ Rm×m and Q+ ∈ R(n−m)×(n−m) such that, defining for each x ∈ [0, 1], Q(x) =
diag[e2µxQ−, e−2µxQ+], Q(x)Λ = ΛQ(x), the following matrix inequalities hold

− 2µQ(x)Λ+ + F T Q(x) + Q(x)F ≤ −2νQ(x) (3.6)
(

Im 0m,n−m
G+− G++

)T

Q(0)Λ

(
Im Om,n−m

G+− G++

)
≤

(
G−− G−+

On−m,m In−m

)T

Q(1)Λ

(
G−− G−+

On−m,m In−m

)

(3.7)
Then, there exists C such that (3.4) and the linear hyperbolic system (3.1)-(3.2) is GES.

The details of the proof are given in [24] and they are the basis on which we shall prove in
Proposition 2, but roughly the idea behind the proof consist of taking as candidate Lyapunov
function (based on the L2-norm ) for all y ∈ L2((0, 1), Rn)

V (y) =
∫ 1

0
y(x)T Q(x)y(x)dx (3.8)

and, as usual in Lyapunov techniques, computing its time-derivative along the solutions of
(3.1)-(3.2). Once we get it, conditions are naturally imposed in order to obtain a strict
Lyapunov condition.

11
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3.2 Main contribution: Towards a definition of an event-triggering
condition

We consider now the linear hyperbolic system (3.1) but with the following boundary condi-

tions with disturbance d(t) =
(

d−

d+

)
, that is

(
y−(t, 1)
y+(t, 0)

)
= G

(
y−(t, 0)
y+(t, 1)

)
+ d(t) t ∈ R+ (3.9)

where d− : R+ → Rm and d+ : R+ → Rn−m. It is important to emphasize that d will be
related to the measurement errors as we proceeded in Section 2. In addition, we assume that
d is bounded. Therefore, we will seek for input-to-state stability considerations in order to
establish a triggering condition; indeed, since we deal with disturbance, the non-positivity of
V̇ cannot be guaranteed all time. Therefore, input-to-state stability considerations are still
needed. This is the aim of the following proposition.

Proposition 2 (ISS- strict Lyapunov function). Under assumptions of Proposition 1, let
V (y) be given by (3.8). Then, along the trajectories of (3.1) with boundary conditions (3.9),
it holds

V̇ (y) ≤ −νV + λ‖d‖2

Proof. It can be verified that Q(x)Λ is symmetric, ∂xQ(x)Λ = −2µQ(x)Λ+ and ∂x(yT Q(x)Λy) =
yT Q(x)Λ∂xy + ∂xyT Q(x)Λy − 2µyT Q(x)Λ+y which will be useful for the proof.

Let us consider the Lyapunov function given by (3.8). By computing the time derivative
of V along the solutions of (3.1) yields the following:

V̇ (y) =
∫ 1

0
∂t(yT Q(x)y)dx =

∫ 1

0
(yT Q(x)∂ty + ∂tyT Q(x)y)dx

It can be clearly noticed from the definition of system that ∂ty = F y − Λ∂xy and of course
∂tyT = F yT − Λ∂xyT . Hence,

V̇ (y) =
∫ 1

0
(yT Q(x)(F y − Λ∂xy) + (F yT − Λ∂xyT )Q(x)y)dx

=

∫ 1

0
−yT Q(x)Λ∂xy − ∂xyTΛQ(x)ydx +

∫ 1

0
yT (F T Q(x) + Q(x)F )ydx

=

∫ 1

0
−

[
∂x(yT Q(x)Λy) + 2µyT Q(x)Λ+y

]
dx +

∫ 1

0
yT (F T Q(x) + Q(x)F )ydx

= − [yT Q(x)Λy]10 +
∫ 1

0
yT (−2µQ(x)Λ+ + F T Q(x) + Q(x)F )ydx

=yT (t, 0)Q(0)Λy(t, 0) − yT (t, 1)Q(1)Λy(t, 1)

+

∫ 1

0
yT (−2µΛ+Q(x) + F T Q(x) + Q(x)F )ydx

12
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V̇ (y) =
(

y−(t, 0)
y+(t, 0)

)T

Q(0)Λ

(
y−(t, 0)
y+(t, 0)

)
−

(
y−(t, 1)
y+(t, 1)

)T

Q(1)Λ

(
y−(t, 1)
y+(t, 1)

)

+

∫ 1

0
yT (−2µΛ+Q(x) + F T Q(x) + Q(x)F )ydx

Here, according to the boundary conditions (3.9), i.e

y−(t, 1) = G−−y−(t, 0) + G−+y+(t, 1) + d−

y+(t, 0) = G+−y−(t, 0) + G++y+(t, 1) + d+

we get,

V̇ (y) =
(

y−(t, 0)
G+−y−(t, 0) + G++y+(t, 1) + d+

)T

Q(0)Λ

(
y−(t, 0)

G+−y−(t, 0) + G++y+(t, 1) + d+

)

−
(

G−−y−(t, 0) + G−+y+(t, 1) + d−

y+(t, 1)

)T

Q(1)Λ

(
G−−y−(t, 0) + G−+y+(t, 1) + d−

y+(t, 1)

)

+

∫ 1

0
yT (−2µΛ+Q(x) + F T Q(x) + Q(x)F )ydx

(3.10)

Re-organizing a bit more,

V̇ (y) =






[
Im 0m,n−m

G+− G++

] [
y−(t, 0)
y+(t, 1)

]

︸ ︷︷ ︸
z1

+

[
0

d+

]

︸ ︷︷ ︸
d1






T

Q(0)Λ︸ ︷︷ ︸
D1






[
Im 0m,n−m

G+− G++

] [
y−(t, 0)
y+(t, 1)

]

︸ ︷︷ ︸
z1

+

[
0

d+

]

︸ ︷︷ ︸
d1






−






[
G−− G−+

0n−m,m In−m

] [
y−(t, 0)
y+(t, 1)

]

︸ ︷︷ ︸
z2

+

[
d−

0

]

︸ ︷︷ ︸
d2






T

Q(1)Λ︸ ︷︷ ︸
D2






[
G−− G−+

0n−m,m In−m

] [
y−(t, 0)
y+(t, 1)

]

︸ ︷︷ ︸
z2

+

[
d−

0

]

︸ ︷︷ ︸
d2






+

∫ 1

0
yT (−2µΛ+Q(x) + F T Q(x) + Q(x)F )ydx

(3.11)

We will directly decouple the terms z1 and d1 as well as z2 and d2. We then get

V̇ = (z1 + d1)
T D1(z1 + d1) − (z2 + d2)

T D2(z2 + d2) − νV

where the last term was obtained by assumption (3.6). In addition, we know that

(z1 + d1)
T D1(z1 + d1) = zT

1 D1z1 + 2zT
1 D1d1 + dT

1 D1d1

13
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and

0 ≤
(

1
√

α
z1 −

√
αd1

)T

D1

(
1

√
α

z1 −
√

αd1

)

=
1

α
zT

1 D1z1 − 2zT
1 D1d1 + αd1T D1d1

⇒ 2zT
1 D1d1 ≤

1

α
zT

1 D1z1 + αdT
1 D1d1

for all α > 0, which is the Young’s inequality. Accordingly,

(z1 + d1)
T D1(z1 + d1) ≤ (1 + α)zT

1 D1z1 + (1 +
1

α
)dT

1 D1d1

Similarly −2zT
2 D2d2 ≤

1

β
zT

2 D2z2 + βdT
2 D2d2 for all β ≥ 0, hence

−(z2 + d2)
T D2(z2 + d2) ≤ −(1 − β)zT

2 D2z2 − (1 −
1

β
)dT

2 D2d2

Finally,

V̇ ≤ − νV + (1 + α)zT
1 D1z1 − (1 − β)zT

2 D2z2 + (1 +
1

α
)dT

1 D1d1 − (1 −
1

β
)dT

2 D2d2

= − νV + (1 + α)zT
1 D1z1 − (1 − β)zT

2 D2z2 +

[
d1
d2

]T




(1 +

1

α
D1) 0

0 −(1 −
1

β
)D2




[
d1
d2

]

By assuming both α and β small enough, for the second term, we use assumption (3.7) in
such a way that

[
y−(t, 0)
y+(t, 1)

]T [
Im 0m,n−m

G+− G++

]T

︸ ︷︷ ︸
zT

1

Q(0)Λ︸ ︷︷ ︸
D1

[
Im 0m,n−m

G+− G++

] [
y−(t, 0)
y+(t, 1)

]

︸ ︷︷ ︸
z1

−
[
y−(t, 0)
y+(t, 1)

]T [
G−− G−+

0n−m,m In−m

]T

︸ ︷︷ ︸
zT

2

Q(1)Λ︸ ︷︷ ︸
D2

[
G−− G−+

0n−m,m In−m

] [
y−(t, 0)
y+(t, 1)

]

︸ ︷︷ ︸
z2

≤ 0

Accordingly, we finally achieve an ISS-Lyapunov function,

V̇ ≤ −νV + λ
∥∥∥∥

[
d1
d2

]∥∥∥∥
2

14
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Actually, computing either

∥∥∥∥

[
d1
d2

]∥∥∥∥
2

or ‖d‖2 one gets the desired result:

V̇ ≤ −νV + λ‖d‖2 (3.12)

where λ can be taken as the largest eigenvalue of matrix

(
(1 + 1

α)D1 0
0 −(1 − 1

β )D2

)
.

It can be noticed that in previous formulation, the disturbance was taken in the boundary.
In Appendices either A.4 or B.2 it can be seen that a disturbance is considered as a distributed
one i.e. in the dynamics.

3.3 ISS-based triggering condition for linear hyperbolic systems
By following exactly the same ideas as in Section 2.1 (see inequality (2.6)), from (3.12) we
will restrict d to satisfy:

λ‖d‖2 ≤ νσV (3.13)

getting a sort of weaker inequality. In that case

V̇ ≤ −ν(1 − σ)V σ ∈ (0, 1)

therefore, when (3.13) is violated, an event is triggered. Or, similarly

V̇ ≤ −νV + λ‖d‖2

= −ν(1 − σ)V − νσV + λ‖d‖2

such that
− νσV + λ‖d‖2 ≤ 0 (3.14)

So, when (3.14) is violated, i.e λ‖d‖2 ≥ νσV , an event is triggered. Hence, ti formally defined
becomes:

t0 = 0, ti+1 = inf{t ∈ R|t > ti ∧ ‖d‖2 ≥
νσ
λ

V } (3.15)

The main idea was then to relate d(t) to e(t). Assuming G = H + BK, where both H
and B are given by the model and K was supposed to be computed rendering the linear
hyperbolic system (3.1)-(3.2) global exponentially stable (according to sufficient conditions
for stability presented in previous subsection); thus

d(t) = BKe(t) (3.16)

Let us recall that e(t) is the measurement error (Equation (2.4) for finite-dimensional case).

In this framework it becomes e(t) = −
(

y−(t, 0)
y+(t, 1)

)
+

(
y−(ti, 0)
y+(ti, 1)

)
.

Theorem 1. Under the assumptions of Proposition 1, the system (3.1) with boundary con-
ditions (3.9) and d(t) given by (3.16) with the triggering condition (3.15), is globally asymp-
totically stable.

The proof is an immediate consequence of Proposition 2 where the Lyapunov function is
given by (3.8).
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3.4 V̇ -based triggering condition for linear hyperbolic systems
As we mentioned in Subsection 2.2, it is also possible to do an extension of triggering condi-
tion for finite-dimensional systems to hyperbolic systems by just considering the Lyapunov
function. Indeed, what is interesting is that we have explicitly V̇ (y) given by the Equation
(3.11). Therefore, the event function is:

ev = −V̇1 + σ̃V̇2

where V̇1 is the value of the time derivative of a control Lyapunov function (V̇ ) when applying

K
(

y−(ti, 0)
y+(ti, 1)

)
last time it was necessary an updated . V̇2 is the value of V̇ if K

(
y−(t, 0)
y+(t, 1)

)
is

applied instead. The triggering condition for the linear hyperbolic system under consideration
can be seen in the following:

t0 = 0, ti+1 = inf{t ∈ R|t > ti ∧ V̇1 ≥ σ̃V̇2} (3.17)

Theorem 2. Under the assumptions of Proposition 1, the system (3.1) with boundary con-
ditions (3.9) and d(t) given by (3.16) with the triggering condition (3.17), is globally asymp-
totically stable.

The proof is an immediate consequence of Proposition 2 where the time derivative of the
Lyapunov function is given by (3.11).

3.5 Numerical Examples
Numerical simulations were done by discretizing the linear hyperbolic system. For that
purpose we have used a two-step variant of the Lax–Friedrichs (LxF) numerical method
presented in [30] and the solver on Matlab in [29]. We select the parameters of the numerical
scheme so that the Courant-Friedrich-Levy (CFL) condition for the stability holds. (For
further details about the numerical method see Appendix A.3).

In addition, the sufficient stability conditions we have been dealing with throughout the
section, i.e both (3.5) and those matrix inequalities presented in Proposition 1, were solved
using classical numerical tools. For instance, Condition (3.5) can be solved using semi-
definite programming (see e.g, Yalmip toolbox [20] with SeDuMi solver). For Conditions
(3.6)-(3.7), semi-definite programming combining with the line search algorithm were used.
The implementation was carried out in CVX toolbox, a package for specifying and solving
convex programs [14].

On the other hand, regarding the implementation of the event-triggering condition for
hyperbolic systems, the ideas for that purpose were based on the analysis of hybrid systems
such as in the case of finite-dimensional systems presented in Subsection 2.3. Accordingly,
we have followed the programming logic presented in [27] (HyEQ -toolbox); specially while
thinking in flow set and jump set to be able to verify a triggering condition. And of course,
we worked on the toolbox from [29] by just doing some modifications and taking into account
the following facts:

16
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• Two new functions are created: flow set (InsideC) and jump set (InsideD) are defined.
Let us recall that the event function related to the triggering condition is put in the
jump set function.

• In finite-dimensional systems we dealt with Ordinary differential equations (ODEs)
which can be solved via the solver function ODE45 of MATLAB after having set the
options for the solver : options = odeset(options,’Events’,(t,x) zeroevents(x,C,D,rule))
, for instance. In general, in order to stop automatically the integration, an event
location is defined into the function called Events. Just there, the triggering condition,
or furthermore, the event function is put. Once the integration is stopped, the algorithm
updates the value of the controller and re-starts the integration with the new initial
conditions.

• However, while solving partial differential equations, such a function does not exist.
That tool is not available for the toolbox that we have chosen to solve PDEs .

• Let us mention rapidly that the PDE solver (see again [27] for more details) integrates
the solution via sol = hpde(sol,howfar,timestep) after having defined the problem to
be solved : sol = setup(form,pdefun,t,x,u,method,periodic,bcfun,Neumann). Moreover,
boundary conditions are defined as follows [uL,uR] = bcfun(t,uLex,uRex) which allows
us to define explicitly the boundary conditions with disturbance by just adding the
disturbance term, i.e. [uL,uR] = bcfun(t,uLex,uRex) + d. That was really an advantage
of having worked with such a toolbox.

• Therefore, to stop integrating the solution of the PDEs, we have just not to call the
function sol = hpde(sol,howfar,timestep). In other words, to go out of the loop when
an event occurs. Once the integration has stopped, the algorithm updates the value of
the controller and re-stars the integration with new initial condition (last values) by
calling again the function hpde.

• We have considered the particular case when m = 0 and n = 2. It simplifies a lot
of things in our formulation just for a numerical simulation tractability. So, we can
briefly summarize as follows: The hyperbolic system (3.1) is a 2 × 2 system of bal-
ance laws: ∂ty(t, x) + Λ∂xy(t, x) = F y(t, x) x ∈ [0, 1], t ∈ R+ where y(t, x) ∈ R2,
Λ =diag(λ1, λ2) ∈ R2×2. F ∈ R2×2 eventually identical to zero matrix for a system
of conservation laws. The boundary conditions (3.9) are now y(t, 0) = Gy(t, 1) + d(t),
where G ∈ R2×2 and d ∈ R2 eventually identical to zero in continuous control case. The
Lyapunov (3.8) function is then V (y) =

∫ 1
0 y(x)T Qy(x)e−2µdx and its time derivative:

V̇ (y) = (Gy(t, 1) + d)T QΛ (Gy(t, 1) + d) − (y(t, 1))T e−2µQΛ (y(t, 1))

+

∫ 1

0
yT (−2µΛe−2µxQ + F T e−2µxQ + e−2µxQF )ydx

The sufficient conditions (3.6) and (3.7) become then:

−2µQΛ + F T Q + QF ≤ −2νQ

17
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GT QΛG < e−2µQΛ

We suppose also that eigenvalues of Λ are all positive or negative. In the following
examples such a fact is evident.

The Event-trigger algorithm for linear hyperbolic systems is roughly presented in Algorithm
1 in Appendix A.5 . In that algorithm let us remark that Inside C means that the state flows
in flow set. Inside D means that the state is into jump set, so it is said to be jumped due to
an event occurs. e and d are global variables changing and being monitored all time. Event
function defined according to a triggering condition is monitored all time as well. Lyapunov
function is computed by approximative sums in a sub-function according to the particular
case of formula (3.8).

Example 1: Continuous case

a. Linear hyperbolic system of conservation laws borrowed from [23] Section 4. As aforemen-
tioned, it is a particular case when m = 0 and n = 2 in (3.1) (3.2).

∂ty(t, x) + Λ∂xy(t, x) = 0 x ∈ [0, 1], t ∈ R+ (3.18)

where y(t, x) ∈ R2. Λ = diag(1, 1). The Boundary condition is then y(0, t) = Gy(t, 1)

where: G =

(
0.1 0.6

−1.2 0.1

)
and initial conditions y(0, x) =

(
sin(x)

0

)
. It was verified

the condition (3.5) , that is ‖∆G∆−1‖ = 0.8769 < 1 and thus ρ1(G) < 1 with ∆ =(
1.4435 0

0 1.0477

)
. Besides this, sufficient conditions in proposition 1 were also checked

getting as a result the existence of scalars µ = 0.1, ν = 1.6021 and one symmetric matrix

Q =

(
1 0
0 0.5037

)
. Therefore, the hyperbolic system (3.18) with the related boundary con-

dition is globally exponentially stable. This fact is strongly reinforced by the simulations
in Fig. 4.

b. Now, let us consider a linear hyperbolic system of balance laws as follows:

∂ty(t, x) + Λ∂xy(t, x) = F y(t, x) x ∈ [0, 1], t ∈ R+ (3.19)

where y(t, x) ∈ R2. Λ = diag(1, 1). The Boundary condition is as before y(0, t) =

Gy(t, 1) but: G =

(
0 −1.2
0.6 0

)
and initial conditions y(0, x) =

(
sin(x)
cos(x)

)
. Here F =

(
−0.3 0
0 −0.3

)
is claimed to be small in terms of its norm (see next remark and thereafter

Appendix A.4 to know more about this interesting fact).

Again, it was verified the sufficient stability conditions, ending up ‖∆G∆−1‖ = 0.8769 < 1

and thus ρ1(G) < 1, with ∆ =

(
1.0456 0

0 1.4373

)
. Also, µ = −0.2, ν = 1.4092 and
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(a) Component y1 (b) Component y2
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(c) Lyapunov function

Figure 4: Time evolution of the first component y1 (a) and of the second component y2 (b)
for the System (3.18) in Example 1-a. Also the time evolution of the Lyapunov function.

symmetric matrix Q =

(
0.7466 0

0 1

)
. The hyperbolic system (3.18) with the related

boundary condition is then globally exponentially stable. Fig. 5 shows the result of the
simulations.

Remark: F is claimed to be small enough. This fact, is by the way, a sufficient condition
for stability together with the ones presented before. In Appendix A.4 we illustrate examples
by which it is possible to get stability or unstability. Besides that, we shall try, based on ISS
issues for infinite-dimensional systems, to estimate an upper bound for the size of F .
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(a) Component y1 (b) Component y2
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(c) Lyapunov function

Figure 5: Time evolution of the first component y1 (a) and of the second component y2 (b)
for the System (3.19) in Example 1-b. Also the time evolution of the Lyapunov function.

Example 2: Event-based case (ISS-based triggering condition)

a. Let us consider the linear hyperbolic system of balance laws:

∂ty(t, x) + Λ∂xy(t, x) = F y(t, x) x ∈ [0, 1], t ∈ R+ (3.20)

where y(t, x) ∈ R2. Λ = diag(1, 1). The Boundary condition is again y(0, t) = Gy(t, 1)

with: G =

(
0 −1.2
0.6 0

)
. F =

(
−0.3 0
0 −0.3

)
, but initial conditions y(0, x) =

(
1
1

)
. We

have taken σ = 0.3 and α = 0.3.
Figures 6-(a)-(b) show the result of simulation concerning the components of solution.
With the parameters we have chosen, the trigger algorithm produced 54 execution times.
It is considerably less with respect to continuous time since the time mesh points for all
simulations into the numerical scheme is NT = 200. Fig. 7-(a) shows two decreasing
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Lyapunov functions, the green line and the blue one with execution times for continuous
case and for ISS-event case respectively. It can be noticed that while presenting less
execution times as in the event-based case, the rate of convergence is slower.

In addition, Fig. 7-(b) shows the time evolution of trajectories νσV
λ and ‖d‖2. When

trajectory ‖d‖2 exceeds νσV
λ , meaning that the triggering condition is satisfied, an event

occurs; and right after we enforce d to zero again. It can be also noticed in both Fig.
7-(b) and Fig. ??-(c) (recall that event function is given by ev = −νσV

λ + ‖d‖2) that there
are some peaks. This is mainly due to the discontinuity of solution. Such a discontinuity
propagates along the space and it appears at certain moments according to the entries
values of matrix Λ. Moreover, the first huge peak appears at t = 1 and propagates
according to values of Λ. We strongly believe that it because the initial conditions do
not satisfy the so-called zero-order compatibility condition. In our case of study, y(0, 0) =
Gy(0, 1) must be satisfied (see e.g. [26] or [8] for further information. We will not enter in
full details). Indeed, (

1
1

)
6=

(
0 −1.2
0.6 0

) (
1
1

)

Nevertheless, such a huge peak could be avoided at t = 1 by suitably choosing initial
conditions that satisfy the compatibility condition as we will illustrate in next example. It
is important to empathize anyway that solution may be no continuous and V̇ is negative
all time, almost everywhere, excepting in a finite number of discontinuities.

(a) Component y1 (b) Component y2

Figure 6: Time evolution of the first component y1 (a) and of the second component y2 for
the System (3.20) in Example 2-a.
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Figure 7: In (a) Time evolution Lyapunov functions for the for the System (3.20) in Example
2-a. (b) Time evolution of the trajectories according to triggering condition (3.15) and (c)
Event function.
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b. Now let us consider the same system of balance laws together with the same G as before

but different initial conditions. For example, y(0, x) =
(
2.2x − 1.2
0.4x + 0.6

)
. It can be rapidly

verified that the zero-order compatibility condition y(0, 0) = Gy(0, 1) is satisfied. In that
sense, the first huge peak should not appear at t = 1. The triggering parameters for this
example are: σ = 0.65 and α = 0.2.

Figures 8-9 show the results of the simulation where we have got 50 events. Fig. 9-(a)
shows the comparison between the Lyapunov functions for continuous case and event-base
case. The blue line with execution times (red stars) seems to get away from the green
line. Again, the convergence for event-based control is slower than in continuous case.

Furthermore, in Figures 9-(b)-(c), some peaks are evident. This behaviour is worth re-
marking because it depends directly on the solution and the regularity of it. This is one
reason, we have not mentioned before, for which we have worked in L2-norm. However, it
can be also noticed that no huge peak appears at t = 1. This fact strongly justifies that
the requirements that initial conditions should satisfy zero-order compatibility condition.

(a) Component y1 (b) Component y2

Figure 8: Time evolution of the first component y1 (a) and of the second component y2 for
the system of balance laws in Example 2-b.
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Figure 9: (a) Lyapunov functions comparison for the system of balance laws in Example
2-b. (b) Time evolution of the trajectories according to triggering condition (3.15) and (c)
Event function
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Example 3: Event-based case (V̇ -based triggering condition)

Let us consider exactly the same the linear hyperbolic system of balance laws as before:

∂ty(t, x) + Λ∂xy(t, x) = F y(t, x) x ∈ [0, 1], t ∈ R+ (3.21)

where y(t, x) ∈ R2. Λ = diag(1, 1). The Boundary condition is again y(0, t) = Gy(t, 1)

with: G =

(
0 −1.2
0.6 0

)
. F =

(
−0.3 0
0 −0.3

)
and initial conditions y(0, x) =

(
2.2x − 1.2
0.4x + 0.6

)

satisfying the zero-order compatibility condition. In this example, we consider the triggering
condition shown in (3.17) with σ̃ = 0.2.

Figures 10-11 shows the result of simulations. The number of events at the end was 41.
The event function shown in Fig 11-(b) differs from the ones presented before because the
event function ev here in this approach, is positive between two execution times. Some peaks
(negative values) are also presented showing again that they depend on the nature of solution
and not on the trigger algorithm.

(a) Component y1 (b) Component y2

Figure 10: Time evolution of the first component y1 (a) and of the second component y2 (b)
for the System of balance laws (3.21) in Example 3.
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Figure 11: In (a) Lyapunov functions for the System of balance laws (3.21) in Example 3.
In (b) Event function according to triggering condition (3.17).
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Example 4: Comparison between event-trigger strategies and concluding remarks

In order to see a global behaviour about the convergence and performance related to the
number of events when varying triggering parameters, two tables were proposed. Table
3.1 the results for the ISS-based triggering condition approach. Table 3.2 instead, for the
V̇ −based triggering condition approach.

Parameter σ Number of events Average inter-execution S =
∫ 1

0 V dt

0.1 105 1.9048 1.5246

0.2 76 2.6316 1.6428

0.3 69 2.8986 1.6518

0.4 57 3.5088 1.8140

0.5 51 3.9216 1.8371

0.6 50 4 1.9081

0.7 47 4.2553 1.9880

0.8 43 4.6512 1.9718

0.9 45 4.4444 2.0132

Table 3.1: For ISS-based strategy

Parameter σ̃ Number of events Average inter-execution S =
∫ 1

0 V dt

0.1 34 5.8824 1.9628

0.2 41 4.8780 1.8357

0.3 38 5.2632 1.8435

0.4 52 3.8462 1.7405

0.5 62 3.2258 1.6790

0.6 70 2.8571 1.5783

0.7 89 2.2472 1.5223

0.8 120 1.6667 1.4511

0.9 156 1.2821 1.3976

Table 3.2: For V̇ -based strategy

For both tables, the area S under the Lyapunov graph and t−axis, increases as soon as the
number of event decreases. It means that the rate of convergence gets slower. Indeed those
area values are always less than S = 1.3878 which corresponds to the area for continuous
case. In Table 3.1, for example, it can be noticed that when varying the parameter σ up to
0.9, we have got a less possible number of events (43) with σ = 0.8 but not with σ = 0.9 as
intuitively expected. The third column of both tables is the average inter-execution times
where can be obtained just by the quotient between the number of time mesh point and the
number of events.
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For the V̇ - based triggering strategy, it is reported in Table 3.2 the minimum number of
events (34) has been obtained with σ̃ = 0.1. The area S seems to be very closed to the one
which was got for σ = 0.9 with 45 events in Table 3.1. Fig. 13 can reinforce the argument.
There is a comparable performance between both approaches. It can be noticed also that in
both strategies, the variation of S with respect to the number of events is not too marked.
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t
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V − continuous

* V − event − based(ISS)

* V − event − based(V̇ )

Figure 12: Lyapunov functions for both continuous and the two event-triggered cases (σ = 0.2
and σ̃ = 0.8)

Fig. 12 and Fig. 13 show three Lyapunov functions for the System (3.21). The green
line for continuous case and the red and blue ones for event-triggered case. The interesting
thing to remark in both figures is that, Lyapunov functions for both the two triggering
approaches and the continuous case are very closed to each other, making to seem that ISS-
based triggering approach and V̇ -triggering present a good level of performance comparable
to the continuous one.
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Figure 13: Lyapunov functions for both continuous and the two event-triggered cases (σ = 0.9
and σ̃ = 0.1)

Final remarks

• The 3D plots in Fig. 6, 8 and 10, concerning the components of solutions, seem to be
the same; but actually they are not. Such plots indeed present minor differences (for
instance, a bit more of oscillations) with respect to each other even with respect to
components of solution in continuous case. Therefore, it means that solutions of linear
hyperbolic systems in even-based control do not deviates too much from a desired
threshold implicitly given by the triggering condition. In addition, attractive might be
evident from the numerical point of view.

However, we were not able to prove, in details, the formal existence of solutions between
two execution times. We strongly believe that there is no problem and in fact solution
might exist everywhere except in a finite number of points of discontinuity. But it is
still an open question. One way to handle this matter in future works is to turn to
what is developed for switched linear hyperbolic systems. It would be inspired again
in [24].

• We have mentioned in Section 2 that one of the most important issues in event-based
control is the existence of a minimal inter-execution time. Therefore, in our study, the
question arose naturally. Nevertheless, the difficulty to answer it lies on the disconti-
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nuity of solution. We again believe that there is no infinite number of execution time
in finite time. A technical proof is not done in this instance and for future works it
could be considered. But, numerically, we have observed that while reducing the time
step discretization, the number of event does not increase. This is a good signal that
zeno-phenomena is avoided.

• One way to reduce the magnitude of peaks aforementioned, is to reduce the time-step
when discretizing the time in the numerical scheme. Although it is possible to reduce
the peak value, one will never get an equality in the triggering conditions. At each time
a discontinuity appears, an event may be generated. So, such a discontinuity enforces
the control execution task. Also events may happen consecutively.

• Due to the discontinuity of solution we have worked in L2-norm. In that framework,
one does not have the compatibility conditions.

• Although the rate of convergence for both triggering strategies is slower than in con-
tinuous case, a suitable level of performance holds. It means that while reducing the
number of execution times, we can achieve a system behaviour quite similar to the ideal
case when continuous controller is applied periodically.

• Initial conditions influence a lot the triggering algorithm, specially if the zero-order
compatibility condition is satisfied.
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4 Conclusions and perspectives
The combination of an emerging field such as event-based control with a very interesting
but at the same time difficult field such as control theory of PDEs, promises to exploit
interesting topics in applied mathematics and automatic control. In this document we have
stated the first stages of contribution so that a potential theory of event-based control for
systems modelled by infinite-dimensional rises with important applications to the industry.
In consequence, we have started designing a event-based boundary control for 1-dimensional
linear hyperbolic systems. Our analysis relies on the main ideas of event-based control already
carried out for linear and nonlinear systems. We were able to define two triggering conditions
guaranteeing stability and a suitable level of performance. Indeed, we have presented the
essential of event-based control for finite-dimensional systems with the aim to extend them
to infinite case. We have then taken advantage of sufficient conditions on the boundary for
stabilization of linear hyperbolic system thanks to Lyapunov techniques concluding that the
combination between event-based and boundary control was possible and carried out.

Our preliminary results suggest that our approach can be powerful when reducing com-
putational costs in a context where sensors and actuators may be distributed in a network
modelled by infinite-dimensional systems and controlled on some of the boundaries.

During the project, several difficulties appeared, for example when implementing the
trigger algorithm. Some of them were overcome. Also, several questions arose and were not
answered. They are still open questions which also motive us to study this field. Accordingly,
future investigation lines may be centered in:

• improving the numerical scheme to compute exactly the reset time, in the event-
triggered algorithm.

• studying the existence and uniqueness of solutions for hyperbolic system between two
execution times.

• studying the strong influence of initial conditions in the trigger algorithm.

• studying the existence of the minimal inter-sampling time.

• defining an event-triggering condition from backstepping stabilization approach for hy-
perbolic systems (e.g [18] and [17]).

• potential applications such as flow control.

• extension to other partial differential equation such as parabolic systems.
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APPENDICES
A More about Hyperbolic Systems

A.1 Linear hyperbolic systems of conservation laws
The sequel is based on [8].

Definition 3. Let us consider N ≥ 1 an integer, A ∈ RN×N a real matrix. The system of
conservation laws

∂ty + A∂xy = 0 x ∈ R, t ≤ 0 (A.1)

being [0∞) × R ∋ (x, t) 7→ y(t, x), is said to be hyperbolic if the matrix A is diagonalizable
on R; i.e. there exist real eigenvalues

λ1 ≤ λ1 ≤ ... ≤ λk ≤ λk+1 ≤ ... ≤ λN

and eigenvectors rk ∈ RN such that
Ark = λkrk

forming a base for RN .

In the case of a 1-dimensional linear hyperbolic system, one can explicitly set up the
solution by decomposing the unknown vector y(·, ·) on the base of vectors rk as follows:

y =
N∑

k=1

ϕk(t, x)rk (A.2)

ϕ(·, ·) are also called the characteristic variables. They are solution of N advection equations
with speed λk:

∂tϕk + λk∂xϕk = 0 (A.3)

Indeed, by replacing Equation (A.2) into (A.1), we get

∂ty + A∂xy =
∑

k

(∂tϕkrk + ∂xϕkArk) =
∑

k

(∂tϕk + λk∂xϕk) rk

In order to compute the solution y(·, ·) at point (t, x), we decompose the unknown vector
on the base (rk)k of eigenvectors of A. Then, the k0 characteristic variable φk is solution of
one advection Equation (A.3) which has constants solutions along the characteristic curves
of equation dX

dt = λk. Therefore,

φk(t, x) = φ0
k(x − λkt), 1 ≤ k ≤ N (A.4)

where the initial condition y0(γ) is supposed to be decomposed according to (A.2):

y0(γ) =
N∑

k=1

ϕ0
k(γ)rk, γ ∈ R (A.5)
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Finally, by regrouping (A.4) and (A.2) we have,

y(t, x) =
N∑

k=1

ϕ0
k(x − λkt)rk (A.6)

A.2 Theoretical remark
Let us just remark that both ISS-based triggering condition and V̇ -based triggering condition
rely on the Lyapunov function given by

V (y) =
∫ 1

0
y(x)T Q(x)y(x)dx

which, in turn, is computed thanks to solution y(t, x). It means that the knowledge of solution
along the one-dimensional space [0, 1] is required. However, in practice, to be able to compute
it online, one would need to put sensors everywhere along [0, 1] which is indeed inappropriate
or even useless. This is a motivation for which we seek for obtaining information about y(t, x)
but just from the boundaries.

In order to illustrate the ideas, let us first consider the simplest case, i.e the a linear
hyperbolic equation of conservation laws given in Riemann coordinates.

∂ty + λ∂xy = 0 (A.7)

so, y ∈ R. It is known from the characteristics method that the solution is given by:

y(t, x) = g(x − λt) traveling wave

for any smooth function g of one variable. The verification that it is certainly a solution is
straightforward. Moreover, it can be also shown that

y(t, x) = y
(

t −
x
λ

, 0
)
= g

(
t −

x
λ

)
(A.8)

is also a solution of (A.7). We use the fact that from the information y(t − x
λ), one is

able to recover the information about y(t, x). This is virtue of y(t, x) is invariant along the
characteristic curve starting in y(t − x

λ , 0). Hence, it is possible to re-compute the Lyapunov
function as follows:

V (y) =
∫ 1

0
g

(
t −

x
λ

)T
Q(x)g

(
t −

x
λ

)
dx (A.9)

Let us now consider a 2 × 2 linear hyperbolic system of conservation laws.

∂ty + Λ∂xy = 0 (A.10)

• Case 1: Λ =

(
λ 0
0 λ

)
. In this case, the two waves travel at the same speed. So, it is

enough to compute V (y) from (A.9).
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• Case 2: Λ =

(
λ1 0
0 λ2

)
. In this case, since it is possible to decouple the two equations,

that is

∂ty1 + λ1∂2y1 = 0

∂ty2 + λ2∂2y2 = 0

we can use the information y(t − x
λ1

, 0) for the first equation and y(t − x
λ2

, 1) for the
second one. Hence, the Lyapunov function would be something of the form

V (y) =
∫ 1

0

[
y1(t − x

λ1
, 0)

y2(t − x
λ2

, 1)

]T

Q(x)
[
y1(t − x

λ1
, 0)

y2(t − x
λ2

, 1)

]
dx

On the other hand, if we deal with a linear hyperbolic system of balance laws, we can
proceed similarly .

∂ty + λ∂xy = F y

To illustrate the idea, let us only consider y ∈ R. Now, we seek for a solution y(t, x) =
y(t + x

λ , 0) = g(t + x
λ). In that way, it is clear that

2g′
(

t +
x
λ

)
= F g

(
t +

x
λ

)

Therefore, the solution is given by:

g(t +
x
λ
) = e

1
2 F(t+ x

λ)g(0) (A.11)

and hence, the Lyapunov function is then re-computed as follows

V (y) =
∫ 1

0

(
g(0)e

1
2 F(t+ x

λ)
)T

Q(x)
(

g(0)e
1
2 F(t+ x

λ)
)

dx

A.3 LxF numerical scheme
The Lax-Friedrichs (LxF) method is used for the numerical solution of hyperbolic partial dif-
ferential equations. This scheme is obtained from the explicit centered method. To illustrate
this, let us just consider the simplest case, i.e. the advection equation for which a explicit
centred method is applied.

1

∆t
(
un+1

j − un
j
)
+

a
2∆x

(
un

j+1 − un
j−1

)
(A.12)

In practice this method is not useful due to stability considerations. However, a minor
modifications gives a more useful method. By replacing un

j in the time derivative term by
1
2

(
un

j−1 + un
j+1

)
, we obtain the Lax-Friedrichs method,

un+1
j =

1

2

(
un

j−1 + un
j+1

)
−

a∆t
2∆x

(
un

j+1 − un
j−1

)
(A.13)
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Regarding the stability issues, it can be verified by means of Von Neumann - Fourier method
that the condition of the scheme to be stable is given by [8]:

∣∣∣∣
a∆t
∆x

∣∣∣∣ ≤ 1

A.4 About the size of F for a linear hyperbolic system of balance
laws

It is very interesting to point out that F being sufficiently small together with dissipative
condition for stability (3.5), certainly get exponential stability. In view of [5], the system
of balance law is regarded as a system almost conservative. There, theorem 1 states that
if ρ1(G) < 1, there exists ǫ > 0 such that, if ‖F ‖ < ǫ, then the linear hyperbolic system is
exponentially stable. In the proof (see again [5]), based on Lyapunov techniques as usual,
‖F ‖ < ǫ is imposed so as to get a strict Lyapunov function an hence, the exponentially
convergence of solutions of the system to zero in L2−norm. Furthermore, in [26], the source
term is considered as a perturbation. A sufficient criterion is then given in terms of the
boundary condition to get robust stabilization; but the characteristic method is used instead
of Lyapunov techniques. The existence of an upper bound for the norm of the source term
is also shown.

It is worth remarking that whether F is not small enough, one cannot conclude anything
about the exponential stability. This is why, F small is considered as a sufficient condition as
well. Let us show an example (borrowed and modified from [23] in Appendix A) illustrating
the above fact. So, let us consider the following specific 2×2 hyperbolic system of conservation
laws:

∂ty(t, x) + Λ∂xy(t, x) = 0, x ∈ [0, 1], t ≥ 0 (A.14)

where Λ

(
1 0
0 1

)
, G =

(
0 −1.2
0.6 0

)
and initial conditions y(0, x) =

(
2.2x − 1.2
0.4x + 0.6

)
satisfying

the zero-order compatibility condition.
Fig. A.14 shows the result of simulations where indeed the convergence is clear.
Now, if we consider the particular case of a system of balance laws when Λ = 0 , i.e

∂ty(t, x) = F y(t, x)

It is a ordinary differential equation where x is viewed as a parameter. F =

(
−4 5
−3 3

)
It can

be easily checked that F has their eigenvalues in negative real part. Therefore, since it is
Hurwitz, the system is exponentially stable. See Fig. A.15.
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(a) Component y1 (b) Component y2
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(c) Lyapunov functions

Figure A.14: Time evolution of the first component y1 (a) and of the second component y2
for the system of conservation laws. (c) Lyapunov functions comparison.

(a) Component y1 (b) Component y2

Figure A.15: Time evolution of the first component y1 (a) and of the second component y2
for the finite dimensional system.
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Now, combining the two previuos systems leads to a system of balance laws ∂ty(t, x) +
Λ∂xy(t, x) = F y(t, x). This system seems to be unstable as is shown in Fig. A.16

(a) Component y1 (b) Component y2

Figure A.16: Time evolution of the first component y1 (a) and of the second component y2
for the system of balance laws.

Estimation of ǫ

Now, we shall study a simple case to estimate the value of ǫ. Let us consider

∂ty(t, x) + Λ∂xy(t, x) = F y(t, x) (A.15)

y(t, 0) = Gy(t, 1) (A.16)

where F y(t, x) is viewed as a perturbation. V (y) =
∫ 1

0 y(x)T e−2µxQy(x)dx. The time deriva-
tive when particular case m = 0 and n = 2 yields

V̇ =

∫ 1

0
−[∂x(yT e−2µxQΛy) + 2µyT e−2µQΛy]dx +

∫ 1

0
yT (F T e−2µQ + e−2µQF )ydx

V̇ (y) =
∫ 1

0
yT (−2µΛe−2µxQΛ)ydx + yT (t, 1)

[
GT QΛG − e−2µQΛ

]
y(t, 1)

+

∫ 1

0
yT (F T e−2µxQ + e−2µxQF )ydx

Therefore, if we seek for a ISS Lyapunov function, we impose the following conditions:

−2µΛe−2µxQΛ ≤ −2νe−2µxQ

GT QΛG ≤ e−2µQΛ
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and we take into account the influence of perturbation term, F y(t, x) = δ(t, x) (distributed
perturbation: closely related to what is presented in Appendix B.2). So, we finally get a
ISS-Lyapunov function as follows:

V̇ (y) ≤ −2νV +

∫ 1

0
yT e−2µxQδ + δT e−2µxQydx

= −2νV + 2

∫ 1

0
yT e−2µxQδdx

⇒ V̇ (y) ≤ −2νV +

∫ 1

0
e−2µx

(
1

α
yT Qy + αδT Qδ

)
dx (A.17)

≤ (−2ν +
1

α
)V +

∫ 1

0
λ‖δ‖2e−2µxdx (A.18)

for some α > 0 and λ is the largest eigenvalue of matrix αQ.
Moreover, we look for an estimation of F size. For that purpose, we can use inequality

(A.17) which yields,

V̇ ≤ −2ν
∫ 1

0
e−2µx

(
yT Qy −

(
1

α
yT Qy

)
1

2ν

)
dx +

∫ 1

0
e−2µxα

(
δT Qδ

)
dx

= −α
∫ 1

0

[
−2ν

α

(
e−2µx

(
1 −

1

2ν

)
yT Qy

)
− e−2µxδT Qδ

]

Then, the term inside the integral must be strictly positive. Setting e−2µx bounded and
knowing that δ = F y we finally deduce the following:

(F y)T Q(F y) <
2ν
α

(
1 −

1

2να

)
yT Qy

⇔ yT F T QF y <
(
2ν
α

−
1

α2

)
yT Qy

Then, F T QF <
(2ν

α − 1
α2

)
Q, and hence an estimative of the size of F is done:

‖F ‖ <

√(
2ν
α

−
1

α2

)

Moreover, it can be easily verified by means of a simple optimization procedure that

‖F ‖ < ν

A.5 Event-trigger algorithm
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Input: y(0, x) (Initial conditions), y(t, 1) = (H + BK)y(t, 0) + d (Dissipative
boundary conditions with disturbance) , Thorizon, mesh discretization, other
parameters depending of the triggering condition.

Output: y(t, x) (solution), V (y) (Lyapunov function), ev (event function)
begin

Setting the system to be solved;
sol = setup(form,@pdefun,t,x,Y,method,[],@bcfun) ;
j=1;
while t ≤ Thorizon do

if insideC = 1 then
for i = j to NT(length time mesh ) do

if insideC = 1 then
Solving pde before event-detection;
sol = hpde(sol,howfar,timestep);
t = sol.t;
y = sol.u;
Computing the measurement error;
e(t) = y(ti, 1) − y(t, 1);
d(t)=BK ∗ e(t) ;
computing Lyapunov function;
V ;
monitoring event function ;
ev;
insideD;

else
j=i;
insideD=1;
stop the integration;
break;

end
end

end
Updating;
e(ti) = y(ti, 1) − y(ti, 1) = 0;
d(ti) = 0 ;
V (y);
monitoring event function ;
ev;
insideD;

end
return y(t, x) V (y) ev

end
Algorithm 1: Event-Trigger algorithm for linear hyperbolic systems
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B Input-to-State Stability

B.1 ISS for finite-dimensional systems
The input-to-state stability (ISS) property provides a natural framework in which to formu-
late notions of stability with respect to input perturbations [31] [32].

The concept of ISS implies that, given a bounded input of the dynamical system, the
internal states remain bounded. In other words, the main concept relies on boundedness of
the responses to any bounded disturbance and the convergence to zero if disturbances vanish.
A comprehensive survey on ISS concepts for finite-dimensional systems can be found in [32].
Here we point out some important aspects.

Let us consider a control system of the form:

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (B.1)

A function f : Rn → R is said to be Lipschitz continuous on compacts if for every compact
set S ⊂ Rn there exists a constant L such that

‖f(x) − f(y)‖ ≤ L‖x − y‖

for every x, y ∈ S. A continuous function α : [0, a) → R0+ a > 0 is said to be of class K if
it is strictly increasing and α(0) = 0. It is said to be of class K∞ if a = ∞ and α(r) → ∞
as r → ∞. A class KL function is a function β : R+

0 × R+
0 → R+

0 such that β(·, t) ∈ K∞ for
each t and decrease to zero on the second argument as t → ∞ [33], [31].

Definition 4. [33] A system is said to be input-to-state stability (ISS) if there exist a
function β ∈ KL and a function γ ∈ K∞ such that

‖x‖ ≤ β(‖x0‖, t) + γ(‖u‖∞) (B.2)

holds for all solutions.

Another formulation of ISS, by knowing that max{a, b} ≤ a + b ≤ max{2a, 2b} is the
following:

‖x‖ ≤ max{β(‖x0‖, t), γ(‖u‖∞)} (B.3)

ISS combines overshoot and asymptotic behaviour. We recall that in the linear case: ẋ =
Ax + Bu, we have that ‖x(t)‖ ≤ β(t)‖x0‖ + γ‖u‖∞ which is the estimate according to
the solution x(t) = eAtx0 +

∫ ∞
0 eA(t−τ Bu(τ)dτ . Therefore β(t) = ‖eAt‖ → 0 and γ =

‖B‖
∫ ∞

0 ‖eAsds‖ < ∞. One of the characterization of ISS which also results interesting, is a
dissipation notion in terms of Lyapunov-like function .

Definition 5. [32] A continuous function V : Rn → R is a storage function if it is positive
definite, that is V (0) = 0 and V (x) > 0 for x 6= 0 and proper (radially unbounded), that is
V (x) → ∞ as ‖x‖ → ∞. Accordingly V : Rn → R is a storage function if and only if there
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exists α, α ∈ K∞ such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖)

In addition, we recall the time derivative along the solutions of (2.1) is given by

V̇ (x, u) := ∇V (x) · f(x, u)

The fact given by (5) means, on one hand that the lower bound amounts to properness
and V (x) > 0. On the other hand the upper bound guaratees V (0) = 0. See [16] where
the above characterization is presented as a lemma with its respective proof. As a particular
case, for a quadratic positive definite function V (x) = xT P x, we know that λmin(P )‖x‖2 ≤
V (x) = xT P x ≤ λmax(P )‖x‖2 .

Definition 6. [32] ISS-Lyapunov function
An ISS-Lyapunov function for (B.1) is by definition a smooth storage function V for which
there exists functions γ, α ∈ K∞ so that

V̇ (x, u) ≤ −α(‖x‖) + γ(‖u‖) ∀x, u (B.4)

Integrating (B.4), we have the following dissipation inequality

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

w(u(s), x(s))ds (B.5)

The supply function is w(u, x) ≤ γ(‖u‖) − α(‖x‖).

Finally three more remarks: According to Massera’s theorem, Global asymptotic stability
GAS is equivalent to the existence of smooth Lyapunov function. A system is ISS if and only
if it admits a smooth ISS lyapunov function ( which is proper and positive definite, solution
of the differential inequality (B.4) ). For nonlinear finite-dimensional systems, ISS implies
asymptotic stability. But the converse is false.

B.2 ISS for Infinite-dimensional systems
Particularly, the aim of this section is to see the definition of a ISS-Lyapunov function for
hyperbolic systems. The sequel is based on [22] and [25]. To illustrate the ideas, let us
consider a linear hyperbolic partial differential equation of the form

∂ty(x, t) + Λ∂xy(x, t) = F (x, t)y(x, t) + δ(x, t) (B.6)

where x ∈ [0, L], t ∈ [0, ∞) and Λ =Diag(λ1, ..., λn) is a diagonal matrix in Rn×n. δ is a
disturbance of class C1.

Definition 7. Let v : L2(0, L)×R → R be a continuosly differentiable function, periodic with
respect to its second argument. The function v is said to be a weak Lyapunov function for

44



the system (B.6), if there are two functions ks and kM of class K∞ such that for all functions
φ ∈ L2(0, L) and for all t ∈ [0, ∞)

ks(‖φ‖L2(0,L)
3) ≤ v(φ, t) ≤

∫ L

0
kM(|φ(z)|)dz

and, when δ is identically equal to zero, for all solutions of (B.6) and all t ≥ 0,

dv(y(·, t), t)
dt

≤ 0

The function v is said to be a strict Lyapunov function for (B.6) if, in the absence of δ, there
exits a real number λ1 > 0 such that, for all solutions of satisfying (B.6), and for all t ≥ 0,

dv(y(·, t), t)
dt

≤ −λ1v(y(·, t), t)

The function v is said to be an ISS-Lyapunov function for (B.6) if there exist λ1 > 0 and
a function λ2 of class K such that, for all continuous functions δ, for all solutions of (B.6),
and for all t ≥ 0,

dv(y(·, t), t)
dt

≤ λ1v(y(·, t), t) +
∫ L

0
λ2(|δ(x, t)|)dx

C Internship workplace: GIPSA-Lab
This internship has been carried out at Gipsa-Lab in SySco team at the control department,
under the supervision of Dr. Antoine Girard, Nicolas Marchand and Christophe Prieur.

The GIPSA-lab (Grenoble Images Parole Signal Automatique) is a research institution
that belongs to the French CNRS (Centre National de la Recherche Scientifique), the INPG
(Institut National Polytechnique de Grenoble), the UJF (University Joseph Fourier) and the
Stendhal university. It is located within the INPG site (Grenoble, France)

3‖φ‖L2(0,L) =

√∫ L
0 |φ(x)|2dx

45


	Introduction 
	 Event-based control of finite dimensional systems 
	ISS-based triggering condition 
	-based triggering condition
	Hybrid system formulation and numerical example

	Event-based control of linear hyperbolic systems 
	Linear hyperbolic systems
	Main contribution: Towards a definition of an event-triggering condition
	ISS-based triggering condition for linear hyperbolic systems
	-based triggering condition for linear hyperbolic systems
	Numerical Examples

	Conclusions and perspectives
	More about Hyperbolic Systems
	Linear hyperbolic systems of conservation laws
	Theoretical remark
	LxF numerical scheme
	About the size of F for a linear hyperbolic system of balance laws
	Event-trigger algorithm

	Input-to-State Stability
	ISS for finite-dimensional systems 
	ISS for Infinite-dimensional systems


