

RHUM Robots in Human Environments

O. Aycard (LIG), G. Bailly (GIPSA-Lab) & P.B. Wieber (INRIA-LJK) Grenoble - June 2017

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissements d'avenir

Communauté UNIVERSITÉ Grenoble Alpes

Context

- Thanks to the recent technological advances, robots appear in our daily lives
- Robotics is central to numerous socio-economic challenges
 - Europe
 - CA-RoboCom one of the 6 preselected H2020 FET flagships;
 - FP7 ICT work program: Challenge 2: Cognitive Systems & Robotics.
 - France Robots Initiatives
 - Robolution Capital (80M€);
 - Innorobo.
 - Rhône-Alps
 - Coboteam (ARDI) & Plan Robotique Régional.
 - Grenoble
 - Numerous research teams in several PERSYVAL labs are involved in numerous international & national projects and industrial partnerships (Airbus, Aldebaran, Awabot...)

General Framework

- Robots share their environments & tasks
 - With humans: cobotics, social interaction, education...
 - Among humans: navigation...

- Current robots exhibit impressive behaviors but:
 - Need to be adapted to human environments;
 - Need robustness and safety to be deployed at a large-scale;
 - Their interactions are often stereotypic and lack context-sensitivity, notably to variety of end-users profiles.

Objectives of RHUM

- Objectives of the EA:
 - Federate a plurisdisciplinary team on RHUM;
 - Networking numerous experimental platforms & sharing resources.
- Grenoble assets
 - Large coverage of complementary expertise on RHUM:
 - ✤ 4 labs (GIPSA-Lab, LIG, LJK, TIMC);
 - 10 teams;
 - 26 researchers.
 - Several robots & technical platforms: Nina, Baxter, Pepper...

Organization of RHUM

- 3 complementary actions
 - 1. 4 working groups (GT) targeting precise scientific challenges;
 - 2. 2 interdisciplinary inter-GT challenges;
 - 3. Dissemination, support to challenges and links with teaching.

Working groups (1/2)

> 4 working groups (GT) targeting precise scientific challenges:

- Experimentation & robot design (GT0): gathering traces/interaction signals (teleoperation & W. of Oz), user-centered design...
- Perception & scene comprehension (GT1): perception in motion, active perception, reasoning/planning with missing/sparse data...
- Action & motion in human envt. (GT2): closer coupling between planning & control (predictive control, reactive planning), incremental models...
- Social interaction (GT3): automatic processing of social signals, automatic learning of behavioral models, user-awareness...
- Pairs of permanent researchers from different labs

EA support: 6 M2R internships in 2016

* 1 GT0, 2 GT1, 1 GT2, 2 GT3

-RSYVAL-Lab

Working groups (2/2)

- Subject: Development of an audiovisual model of attention for a companion robot (GT1)
- Rémi Ratajczak M2R IRIV Strasbourg / D. Pellerin & C. Garbay
- Results: Conception & implementation of a rapid audiovisual model of attention that includes the detection and localization of humans for a companion robot Qbo

PERSYVAL-Lab

- Publication: the First International Conference on Applications and Systems of Visual Paradigms (VISUAL 2016)
- Funding: Qbo was funded by a persyval Exploratory Project between GIPSA-lab & LIG

sité Grenoble Alpes

Working groups (2/2)

Communauté UNIVERSITÉ Grenoble Alpes

Organization of RHUM

- 3 complementary actions
 - 1. 4 working groups (GT) targeting precise scientific challenges;
 - 2. 2 interdisciplinary inter-GT challenges;
 - 3. Dissemination, support to challenges and links with teaching.

ERSYVAL-Lab

Interdisciplinary inter-GT challenges (1/5)

2 interdisciplinary inter-GT challenges

1. Motion safety in dynamical & uncertain envts

- Taking into account human attention/intention
- Handling dynamic streams
- Social, cultural & psychological rules of approach/avoidance

2. Learning/adapting behaviors for social interaction

- Learning by demonstration and HRI studies using immersive teleoperation
- Models of interactive behaviors : perception/action loops & multimodal coordination
- Adaptation to the task & human partners: choice & adaptation of behavioral models

EA support: 2 PhD thesis starting in 2017

- Safe and Appropriate Navigation among People for Service Robots
- Acquiring Human-Robot Interaction skills with Transfer Learning **Techniques** TÉ Grenoble Alpes

Interdisciplinary inter-GT challenges (2/5)

- Safe and Appropriate Navigation among People for Service Robots
- Matteo Ciocca supervised by T. Fraichard/P.B. Wieber

- Integration of Motion Safety into a Model Predictive Control for biped robots to navigate appropriately among people.
 - <u>Motion Safety</u> based on Inevitable Collision State (ICS) [T. Fraichard and H. Asama];
 - <u>People</u> described via pedestrian modeling;
 - <u>Control design</u> according to Feasibility and Stability [D. Q. Mayne et al];
 - <u>Appropriate navigation</u> evaluation: controller parameters, reasons of failure.

Interdisciplinary inter-GT challenges (3/5)

- Related Material:
 - [Bohórquez et al, 16] Integration of Passive Safety level into Model predictive control for biped robots;
 - [Hang Yu Master Thesis] Formal characterization of Passive Friendly Safety (PFS).

- First Tasks:
 - Feasibility (and Safety) proof of "relaxed passive safety", introduced in [Bohórquez et al, 16];
 - Performance evaluation of Passive Friendly Safety (PFS) for biped robots.
- Open Question:
 - Implicit integration of Motion Safety Constraints into the Model predictive control problem.

Interdisciplinary inter-GT challenges (4/5)

- Acquiring HRI skills with Transfer Learning Techniques
- Omar-Samir Mohammed supervised by G. Bailly/D. Pellier
- Transfer planning & control models learned from previous experience between different experimental conditions, tasks and between robots
 - Machine learning (from observations to actions);
 - Interactive data;
 - Distinguish/combine transfer & adaptation
 - Identification of old/new abilities: limits of adaptation;
 - Decompose tasks into a sequence of elementary abilities.
- Toy problem

PERSYVAL-Lab

- Cursive writing
 - IRONOFF : 550 writers, isolated letters vs. frequent words, French & English);
 - ML challenges: drawings to tracings, drawings/tracings from/to letters, etc;
 - Abilities: stokes, style component, etc.

Interdisciplinary inter-GT challenges (5/5)

- Tasks
 - Identification
 - ImageNet transfer
 - Captioning
 - ML: classification vs. regression
 - Writing styles
 - MDS vs. DNN bottleneck
- Open questions
 - Known/new letter/style
 - Coverage, outliers
 - Goodness of fit
 - Transfer learning
 - New letters
 - Stroke decomposition

Organization of RHUM

- 3 complementary actions
 - 4 working groups (GT) targeting precise scientific challenges;
 - 2. 2 interdisciplinary inter-GT challenges;
 - 3. Dissemination, support to challenges and links with teaching.

ERSYVAL-Lab

Dissemination, support to challenges and links with teaching

- 1. Dissemination
 - Website: <u>http://www.gipsa-lab.grenoble-inp.fr/projet/RHUM;</u>
 - 1 day workshop (5/2016): 50 local participants, 2 invited speakers, 4 local speakers, posters;
 - 1 "working lunch" (10/2015): posters + discussions;
- 2. Support challenges
 - Local: PersyCup (persyval "formation");
 - National & international: national robotic cup, robot design competition (ICSR 2016).
- 3. Links with teaching
 - Identify existing teaching modules & enhancing their visibility;
 - Robotic courses in future projects (EUR);
 - Support new robotics course: experimental platforms (FABLAB + O. Aycard) (persyval "formation").

EA support: support for workshops & challenges

Communauté ^{NIVERSITÉ} Grenoble Alpes

Conclusions & perspectives

- Robot as a cyber-physical system evolving in humans environment
 - Transdisciplinary challenge;
 - Major socio-economical challenge: cobotics, social robots...
- Multiscale project

FRSYVAL-Lab

- Enables specific exploratory works: 4 WG;
- Supports collaborative works: 2 PhD;
- Dissemination (+animation/structuration) and support.
- Mobilization of the local community
 - Offers a place for cross-labs exchanges and debates.
- Unique opportunity for structuring & coordinating robotics
 - Offers the possibility to set up a Grenoble identity at the national level;
 - Reassembles a critical mass of researchers in order to shift projects upscale: EUR, CDP (Cross Disciplinary Project), Carnot Cognition, ANR, European project.

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissements d'avenir