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Learning to control large scale parallel computing platforms.

The batch scheduling problem

The investing institution/company sees this 10M cores machine:

It finds the initial 280M USD and sustains the 15MW peak power.
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Learning to control large scale parallel computing platforms.

The batch scheduling problem

The machine is used by submitting jobs.

Scheduler

Compute Nodes

Time

Users

Job submissions

High-Performance Computing
                 System

Results
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Learning to control large scale parallel computing platforms.

The batch scheduling problem

The system administrator sees this:
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The batch scheduling problem

The users see this:
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Learning to control large scale parallel computing platforms.

The batch scheduling problem

Problem

Find a policy for the on-line nonpreemptive execution of a set of
parallel jobs on a HPC platform with a complex communication

network linking heterogenous resources.

Objective

Minimize the average waiting time of jobs.
*TODO: bus stop* The elephant in the room

The performance of any scheduling policy is heavily dependent
on user and job behavior.

Our answer: adaptation.
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The batch scheduling problem

2 The current state of affairs
Backfilling heuristics
Tuning
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Learning to control large scale parallel computing platforms.

The current state of affairs

Backfilling heuristics

The basic heuristic: EASY-Backfilling
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Learning to control large scale parallel computing platforms.

The current state of affairs

Tuning

Primary and Backfilling Reordering Policies
The ’primary’ and ’backfilling’ job order may be independently

tampered with. Many heuristics exist.

FCFS: First-Come First-Serve, the widely used default
policy which ensures no starvation

LCFS: Last-Come First-Serve.

LPF: Longest estimated Processing time First.

SPF: Smallest estimated Processing time First.

LQF: Largest resource requirement First.

SQF: Smallest resource requirement First.

EXP: Largest Expansion Factor First
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Learning to control large scale parallel computing platforms.

The current state of affairs

Tuning

Problem statement: Can we leverage logged machine
usage data in order to choose both primary and
backfilling policy among the various available heuristics?
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Learning to control large scale parallel computing platforms.

Our approach

3 Our approach
Contributions
Resampling methodology.
Managing risk with thresholding.
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Learning to control large scale parallel computing platforms.

Our approach

Contributions

Our contributions:

A new lightweight HPC Simulator

The study of static policies under a resampling-based,
train/test methodology.

How to avoid ’extreme waiting time’ events?
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Learning to control large scale parallel computing platforms.

Our approach

Resampling methodology.

Resampling: why?
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Figure: Weekly average waiting times of various policies.

We need larger sample sizes.
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Learning to control large scale parallel computing platforms.

Our approach

Resampling methodology.

Resampling, or: how to simulate using 2000 weeks of log data
as input using a year-long trace.

User 1
User 2
User 3
User 4

User 1
User 2
User 3
User 4

Original Trace: ~1 year long

Resampled Weeks

...
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Learning to control large scale parallel computing platforms.

Our approach

Resampling methodology.

Average vs Maximum waiting time
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Learning to control large scale parallel computing platforms.

Our approach

Resampling methodology.

Average vs Maximum waiting time

0e+00

2e+05

4e+05

6e+05

−5000 −2500 0 2500 5000
Average AvgWait cost improvement (FCFS−FCFS averages at 6952 s.)

M
ax

im
u

m
 M

ax
W

ai
t 

co
st

im
p

ro
ve

m
en

t 
(F

C
F

S
−

F
C

F
S

 m
ax

es
 a

t 
36

94
03

 s
.)

Backfilling
exp

fcfs

lcfs

lpf

lqf

spf

sqf

Primary

●

●

●

●

●

●

●

exp

fcfs

lcfs

lpf

lqf

spf

sqf

~30%

strongly
worded
e-mail

18 / 28



Learning to control large scale parallel computing platforms.

Our approach

Managing risk with thresholding.

We recover no-starvation guarantees by using a threshold.

if waitj > T then
Push job j ahead of the wait queue.

end if
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Learning to control large scale parallel computing platforms.

Our approach

Managing risk with thresholding.

Thresholding: Simulation results with 20h.
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Learning to control large scale parallel computing platforms.

Our approach

Managing risk with thresholding.

4 Experimental validation
Train/test experiments.
Methodology
Traces
Results
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Learning to control large scale parallel computing platforms.

Experimental validation

Methodology

Training Data

Simulations 

Time

Resampling

Length = 1 Year

Length : 6 monthsLength : 6 months
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Learning to control large scale parallel computing platforms.

Experimental validation

Methodology

Training Data Testing Data

Simulations Simulations 
"Model",

best policy in discrete set

Time

Resampling Resampling

Length = 1 Year

Length : 6 monthsLength : 6 months
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Learning to control large scale parallel computing platforms.

Experimental validation

Traces

Table: Workload logs used in the simulations.

Name Year Processors Jobs Duration

KTH-SP2 1996 100 28k 11 Months
CTC-SP2 1996 338 77k 11 Months
SDSC-SP2 2000 128 59k 24 Months
SDSC-BLUE 2003 1,152 243k 32 Months
CEA-Curie 2012 80,640 312k 3 Months
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Learning to control large scale parallel computing platforms.

Experimental validation

Results
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Learning to control large scale parallel computing platforms.

Experimental validation

Results
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Learning to control large scale parallel computing platforms.

Conclusion

Conclusion
Adaptive policies are possible in batch scheduling!

We can reduce the waiting time from 12 to 46 percent on average.

This requires simulation. Can we eliminate this requirement?

Multi-armed bandit.

Can we be more ambitious?

Wider search space
Contextual policy choice
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