

Grenoble | images | parole | signal | automatique | laboratoire

Blind source separation and electroencephalography analysis a geometrical approach

Persyval days 2017

Florent Bouchard, Jérôme Malick, Marco Congedo

Laboratoire Gipsa-lab, UMR 5216, CNRS, UGA 11 rue des mathématiques 38420 Grenoble, France florent.bouchard@gipsa-lab.fr

June 14, 2017

UMR 5216

Our approach: geometrical modeling of the problem

Numerical experiment

Florent Bouchard, Blind source separation and EEG analysis

Our approach: geometrical modeling of the problem

Numerical experiment

Florent Bouchard, Blind source separation and EEG analysis

Electroencephalography (EEG)

 recording of the electrical activity on the scalp resulting from the electrical activity of the brain

applications:

- brain research
- diagnosis epilepsy, sleep disorders,...
- neurofeedback modulate its own brain activity
- brain computer interface video games, assistance to disabled persons

interests:

gipsa-lab

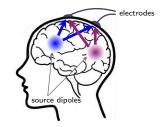
- low cost
- non-invasive
- very good temporal resolution

well capture the dynamics of brain activity

Electroencephalography (EEG)

 recorded activity generated by electrical source dipoles inside the brain

simultaneous activation of colons of neurons



- source signals are mixed while propagating through the brain, skull and scalp [Nunez and Srinivasan, 2006]
- recorded signals $x(t) \in \mathbb{R}^n$ follow the mixing process:

$$x(t) = As(t),$$

•
$$s(t) \in \mathbb{R}^p$$
, source signals

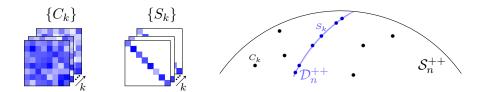
• $A \in \mathbb{R}^{n \times p}$, mixing matrix

Blind source separation (BSS)

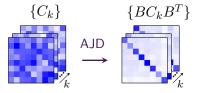
 \blacktriangleright retrieve the source signals s(t) and the mixing process A from the observations x(t) [Comon and Jutten, 2010]

only assume that source signals are statistically independent

- use K matrices C_k containing the statistics of x(t):
 - element i, j: statistical link between electrodes i and j
 - in S_n^{++} , set of symmetric positive definite (SPD) matrices
- matrices S_k containing the statistics of s(t) are diagonal



- Given $\{C_k\}$, find an invertible matrix $B \in \mathbb{R}^{n \times n}$ such that $BC_k B^T$ are as much diagonal as possible
- estimated source signals are $\tilde{s}(t) = Bx(t)$
- ▶ for K > 2, no closed form solution iterative optimization algorithm

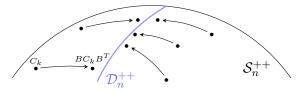


Our approach: geometrical modeling of the problem

Numerical experiment

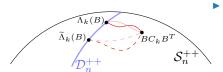
Florent Bouchard, Blind source separation and EEG analysis

from a geometrical point of view:



▶ we want change the basis in order to get the matrices C_k as "close" as possible to D⁺⁺_n

we need the notion of "distance" of a matrix on \mathcal{S}_n^{++} to the subset \mathcal{D}_n^{++}



• "distance" from $BC_k B^T$ to \mathcal{D}_n^{++} :

• a divergence $d(\cdot, \cdot)$ on \mathcal{S}_n^{++}

similar to a distance, less properties • a diagonal matrix $\Lambda_k(B)$ in \mathcal{D}_n^{++}

• given $d(\cdot, \cdot)$, the natural choice for $\Lambda_k(B)$ is [Alyani et al., 2016]

> $\Lambda_k(B) = \operatorname{argmin} \ d(BC_k B^T, \Lambda)$ $\Lambda \in \mathcal{D}_n^{++}$

the joint diagonalizer B is defined as

$$\underset{B}{\operatorname{argmin}} \ \sum_k w_k d(BC_k B^T, \Lambda_k(B))$$

many choices for the divergence $d(\cdot, \cdot)$

Florent Bouchard, Blind source separation and EEG analysis

 Frobenius distance: least-squares criterion AJD in [Cardoso and Souloumiac, 1993]

$$\delta^2_{\mathsf{F}}(C,\Lambda) = \|C - \Lambda\|_{\mathsf{F}}^2 \qquad \Lambda = \operatorname{ddiag}(C)$$

Kullback-Leibler divergence: from statistics and signal processing

$$d_{\mathsf{KL}}(P,S) = \operatorname{tr}(P^{-1}S - I_n) - \log \det(P^{-1}S)$$

left measure - log-likelihood criterion
AJD in [Pham, 2000]

 $d_{\mathsf{IKL}}(C, \Lambda) = d_{\mathsf{KL}}(\Lambda, C) \qquad \qquad \Lambda = \mathrm{ddiag}(C)$

• right measure

$$d_{\mathsf{rKL}}(C,\Lambda) = d_{\mathsf{KL}}(C,\Lambda) \qquad \Lambda = \mathrm{ddiag}(C^{-1})^{-1}$$

► natural Riemannian distance: geodesical distance on S_n^{++} [Bhatia, 2009]

$$\delta^2_{\mathsf{R}}(C,\Lambda) = \left\| \log(\Lambda^{-1/2}C\Lambda^{-1/2}) \right\|_{\mathsf{F}}^2 \qquad \log(C^{-1}\Lambda) = 0$$

 Bhattacharyya distance: closely related to the natural Riemannian distance, numerically cheaper [Sra, 2013]

$$\delta_{\mathsf{B}}^2(C,\Lambda) = 4\log \frac{\det((C+\Lambda)/2)}{\det(C)^{1/2}\det(\Lambda)^{1/2}} \qquad 2\operatorname{ddiag}\left((C+\Lambda)^{-1}\right) = \Lambda^{-1}$$

Wasserstein distance: from optimal transport [Villani, 2008]

$$\delta^2_{\mathsf{W}}(C,\Lambda) = \operatorname{tr}\left(\frac{1}{2}(C+\Lambda) - (\Lambda^{1/2}C\Lambda^{1/2})^{1/2}\right) \quad \operatorname{ddiag}\left((\Lambda^{1/2}C\Lambda^{1/2})^{1/2}\right) = \Lambda$$

Florent Bouchard, Blind source separation and EEG analysis

12/18

Our approach: geometrical modeling of the problem

Numerical experiment

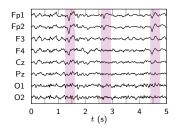
Florent Bouchard, Blind source separation and EEG analysis

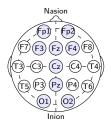
gipsa-lab

13/ 18

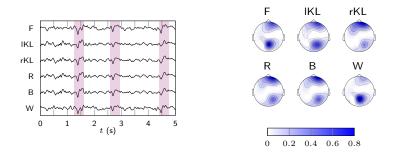
Numerical experiment

- recording of an epileptic patient 19 electrodes, sampling rate 128Hz
- goal: retrieve the source corresponding to the 3 peak-slow wave complexes





Numerical experiment



Left: waveforms of the estimated source corresponding to the peak-slow wave complexes for all divergences considered

Right: spatial distributions of the estimated source on the scalp for all divergences considered

Conclusions and perspectives

- \blacktriangleright different criteria give different information \rightarrow combine them
- try different combinations of divergence / target matrices
- study the theoretical properties of the criteria
- study the links between AJD and centers of mass

Thank you for your attention !

PhD: October 2015 - September 2018

Publications:

- F. Bouchard, L. Korczowski, J. Malick, M. Congedo. Approximate joint diagonalization within the Riemannian geometry framework. 24th European Signal Processing Conference (EUSIPCO-2016).
- F. Bouchard, J. Malick, M. Congedo. Approximate joint diagonalization according to the natural Riemannian distance. 13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA-2017)
- F. Bouchard, P. Rodrigues, J. Malick, M. Congedo. Réduction de dimension pour la séparation aveugle de sources. Submitted to GRETSI 2017.
- F. Bouchard, J. Malick, M. Congedo. Riemannian optimization and approximate joint diagonalization for blind source separation. Submitted to IEEE Transactions on signal processing.

gipsa-lab

17/18

Alyani, K., Congedo, M., and Moakher, M. (2016).

Diagonality measures of Hermitian positive-definite matrices with application to the approximate joint diagonalization problem.

Linear Algebra and its Applications.

Bhatia, R. (2009).

Positive definite matrices. Princeton University Press.

Cardoso, J.-F. and Souloumiac, A. (1993).

Blind beamforming for non Gaussian signals. *IEE Proceedings-F*, 140(6):362–370.

Comon, P. and Jutten, C. (2010).

Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, 1st edition.

Nunez, P. L. and Srinivasan, R. (2006).

Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA.

Pham, D.-T. (2000).

Joint approximate diagonalization of positive definite Hermitian matrices. *SIAM J. Matrix Anal. Appl.*, 22(4):1136–1152.

Sra, S. (2013).

Positive definite matrices and the S-divergence. arXiv preprint arXiv:1110.1773.

Villani, C. (2008).

Optimal transport: old and new, volume 338. Springer Science & Business Media.

