Target Identification using Electroreception

Chun-Hsiang Tsou Laboratoire Jean Kuntzmann (LJK)

Under the supervision of E. Bonnetier (LJK), F. Triki (LJK), and M. Alamir(Gipsa-Lab).¹

14 June 2017

¹This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissements d'avenir \geq \neg

Electroreception for weakly electric fish

Electroreception is the ability that special fish species use to recognize their environment.

- Electric organ: generate a stable, high-frequency, weak electric field.
- Electroreceptors: measure the transdermal potential modulations caused by a nearby target.
- Nervous system: perceive target's shape and location.

The electric fish, and its electric organs.

法国际 医耳道氏

Toward fish-inspired aquatic robots

The objectives of the Phd Thesis are

- i to derive a mathematical model for the Electroreception.
- ii to study the inverse problem related to the Electroreception:
 - to analyse how the identification procedure is sensitive to model and measurements errors (stability estimates).
 - to solve numerically the inverse problem (convergence estimates).
- iii to derive fast and efficient algorithms for real time

electro-localization electric fish like aquatic robots.

The generated electric field by the fish and its interaction with a target.

The weakly electric fish

The mathematical model:

Let

- $\Omega \subset \mathbb{R}^d$ be the electric fish.
- $\nabla k_0 > 0$ be the conductivity of the background $\mathbb{R}^d \setminus \overline{\Omega}$.
- $D \subset \mathbb{R}^d \setminus \overline{\Omega}$ be the target with conductivity $k(\omega) : [\underline{\omega}, \overline{\omega}] \to \mathbb{C} \setminus \mathbb{R}_-$, such that

$$\Sigma := \{k(\omega); \omega \in [\underline{\omega}, \overline{\omega}]\},\$$

has an accumulation point in \mathbb{C} .

For example the empirical Drude model:

$$k(\omega) := \kappa_1 - \frac{\kappa_2}{\omega^2 + i\omega\kappa_3},\tag{1}$$

where $\kappa_p > 0$ are constants that depend on the biological tissue of the target D.

The weakly electric fish

The mathematical model:

Let

• $u(\cdot, \omega)$ be the electric potential field generated by the fish:

$$\begin{cases} \Delta u(x,\omega) = f(x) & \text{in } \Omega, \\ \partial_{\nu\Omega} u(x,\omega)|_{-} = 0 & \text{on } \partial\Omega, \\ \nabla \cdot [k_0 + (k(\omega) - k_0)\chi_D(x)]\nabla u(x,\omega) = 0 & \text{in } \mathbb{R}^d \setminus \overline{\Omega}, \\ u(x,\omega)|_{+} - u(x,\omega)|_{-} = \xi \partial_{\nu\Omega} u(x,\omega)|_{+} & \text{on } \partial\Omega, \\ |u(x,\omega)| = O(|x|^{1-d}) & \text{as } |x| \to \infty. \end{cases}$$

4 3 b

where

- wave-type electric signal: $f(x, t) = f(x) \sum_{n} a_n e^{in\omega_0 t}$.
- $\omega = n\omega_0$ are the probing frequencies.
- χ_D is the characteristic function of the target D.
- ξ the effective thickness of the fish skin $\partial\Omega.$

Multifrequency Electrical Impedance Tomography

Similarities with the Multifrequency Electrical Impedance Tomography.

- ∢ ⊒ →

The Multifrequency Electrical Impedance Tomography

The mathematical model:

Let

- Ω be the biological tissu under probe.
- $D\subset \Omega$ be the cancerous tissu with conductivity $k(\omega)$.
- $\Omega \setminus \overline{D}$ be the normal tissu with conductivity k_0 .
- The electric potential $u(\cdot,\omega)$ solution

$$\begin{cases} \nabla \cdot (k_0 + (k(\omega) - k_0)\chi_D(x)) \nabla u(x,\omega) = 0 & \text{in } \Omega, \\ k_0 \partial_{\nu_\Omega} u(x,\omega)(x) = f(x) & \text{on } \partial\Omega, \\ \int_{\partial\Omega} u(x,\omega) ds = 0, \end{cases}$$
(3)

is generated by the input current f(x) on $\partial \Omega$.

• The mfEIT inverse problem is to recover D from measurements of $u(x, \omega)$ on $\partial \Omega$ for $\omega \in [\underline{\omega}, \overline{\omega}]$, $0 \leq \underline{\omega} < \overline{\omega}$, that is

$$u(x,\omega)|_{\partial\Omega}, \ \omega \in [\underline{\omega},\overline{\omega}] \longrightarrow D$$

Stability estimates for disks with a single frequency

Theorem (Bonnetier-Triki-Tsou 2016)

Let D and \tilde{D} be two disks in Ω . Denoting by u (resp. \tilde{u}) the solution of (3) with the inclusion D (resp. \tilde{D}). Let

 $\varepsilon = \sup_{x \in \partial \Omega} |u - \tilde{u}|.$

Then, there exist constants C > 0 and $0 < \mu < 1$ such that,

$$|D \bigtriangleup \tilde{D}| \le C \varepsilon^{\mu}. \tag{4}$$

A B > A B >

Here, \bigtriangleup denotes the symmetric difference and the constants C, μ depend only on Ω and f.

Spectral decomposition with multifrequency measurements

Theorem (Ammari-Triki, 2016)

Let $u(x, \omega)$ be the unique solution to the system (3). Then the following decomposition holds:

$$u(x,\omega) = k_0^{-1} u_0(x) + \sum_{n=1}^{\infty} \frac{\int_{\partial\Omega} f(z) w_n^{\pm}(z) ds(z)}{k_0 + \lambda_n^{\pm}(k(\omega) - k_0)} w_n^{\pm}(x),$$

= $k_0^{-1} u_0(x) + u_f(k(\omega), x),$ (5)

where $u_0(x) \in H^1_{\diamond}(\Omega)$ depends only on f and D, and is the unique solution to

$$\begin{cases} \bigtriangleup u = 0 & \text{in } \Omega \setminus D, \\ \nabla u = 0 & \text{in } D, \\ \frac{\partial u}{\partial \nu} = f & \text{on } \partial \Omega, \\ \int_{\partial \Omega} u ds = 0 \end{cases}$$
(6)

→ < ∃ >

Stability estimate with multifrequency measurements

Theorem (Ammari-Triki, 2017)

Let D and \tilde{D} be two inclusions in Ω . Denoting by u (resp. \tilde{u}) the solution of (3) with the inclusion D (resp. \tilde{D}). Let

$$\varepsilon = \sup_{x \in \partial \Omega, \omega \in [\underline{\omega}, \overline{\omega}]} |u - \tilde{u}|.$$

Then, there exist constants C > 0 and $0 < \tau < 1$ such that,

$$|D \bigtriangleup \tilde{D}| \le C(\frac{1}{\ln(\varepsilon^{-1})})^{\tau}.$$
(7)

通 と く ヨ と く ヨ と

Here, \bigtriangleup denotes the symmetric difference and the constants C, τ depend only on Ω and g.

Optimization algorithm

Our scheme is essentially based on the minimizing of the functional

$$J(u) = \frac{1}{2} \int_{\partial \Omega} |u - u_{meas}|^2 ds(x),$$

where u is the simulated solution of (3) and u_{meas} is the measurement.

- FreeFem++ for numerical experiments.
- P2 finite elements for the numerical resolution of the PDEs.
- Spectral Fourier cut-off regularization method for the retrieval of the shape of *D*.

-

Reconstruction results with a single frequency

We found in this case that $\mu = 0.96$.

- ∢ ≣ →

э

Reconstruction results with multifrequency measurements

Reconstruction results with multifrequency measurements

- ∢ ⊒ →

3

Reconstruction results with multifrequency measurements

3 x 3

Reconstruction results with multifrequency measurements

Reconstruction results with multifrequency measurements

Conductivity profile reconstruction & Relative symmetric differences

Conductivity profile reconstruction

•	real value	ellipse	square	concave	small	in Ω_2
κ_1	3	2.80971	3.36482	3.00287	6.65418	2.89787
κ_2	2	1.79063	2.34197	1.96926	5.14671	1.86579
κ_3	1	1.00212	0.987247	0.999658	1.13223	1.00446

Relative symmetric difference = $\frac{ D_{reconst} \triangle D_{target} }{ D_{target} }$.									
•	ellipse	square	concave	small	in Ω_2				
values	0.07055	0.12187	0.24299	0.19471	0.1205968				

- ∢ ≣ ▶

э

References

- H. Ammari, F. Triki and C-H. Tsou, Numerical determination of anomalies in multifrequency electrical impedance tomography, submitted to SIAM Applied Mathematics (2017).
- H. Ammari and F. Triki. Identification of an inclusion in Multifrequency Electric Impedance Tomography, Communications in Partial Differential Equations, Issue 1, Volume 42, Pages 159-177, (2017).
- E. Bonnetier, F. Triki and C.H. Tsou. Eigenvalues of the Neumann-Poincaré operator for two inclusions with contact of order m: A numerical study, to appear in Journal of Computational Mathematics (2017).
- E. Bonnetier, F. Triki and C.H. Tsou. Inverse Condutivity Problem: A stable method to determine discs, *preprint 2017*

通 と く ヨ と く ヨ と

Conclusion and perspectives

We have established stability estimates for the multifrequency impedance tomography. The numerical calculations seem to be in agreement with the theoretical results.

We plan

- to study the case with multiple inclusions D_j , $j \in J$.
- to extend the analysis to unbounded domains: the weak electric fish.
- to derive fast algorithms for identifying the inclusions within a set of given shapes.

THANK YOU FOR YOUR ATTENTION!

・ロン ・回と ・ヨン ・ ヨン

э.