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Electroreception for weakly electric fish

Electroreception is the ability that special fish species use to recognize
their environment.

Electric organ: generate a stable, high-frequency, weak electric field.

Electroreceptors: measure the transdermal potential modulations
caused by a nearby target.

Nervous system: perceive target’s shape and location.

The electric fish, and its electric organs.
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Toward fish-inspired aquatic robots

The objectives of the Phd Thesis are
i to derive a mathematical model for the Electroreception.
ii to study the inverse problem related to the Electroreception:

- to analyse how the identification procedure is sensitive to model and
measurements errors (stability estimates).

- to solve numerically the inverse problem (convergence estimates).

iii to derive fast and efficient algorithms for real time
electro-localization electric fish like aquatic robots.

The generated electric field by the fish and its interaction with a target.
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The weakly electric fish

The mathematical model:
Let

Ω ⊂ Rd be the electric fish.

O k0 > 0 be the
conductivity of the background Rd \ Ω.

D ⊂ Rd \ Ω
be the target with conductivity
k(ω) : [ω, ω]→ C \ R−, such that

Σ := {k(ω);ω ∈ [ω, ω]} ,

has an accumulation point in C.
For example the empirical Drude model:

k(ω) := κ1 −
κ2

ω2 + iωκ3
, (1)

where κp > 0 are constants that depend on the biological tissue of
the target D.
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The weakly electric fish

The mathematical model:
Let

u(·, ω) be the electric potential field generated by the fish:
4u(x , ω) = f (x) in Ω,
∂νΩu(x , ω)|− = 0 on ∂Ω,
∇ · [k0 + (k(ω)− k0)χD(x)]∇u(x , ω) = 0 in Rd \ Ω,
u(x , ω)|+ − u(x , ω)|− = ξ∂νΩu(x , ω)|+ on ∂Ω,
|u(x , ω)| = O(|x |1−d) as |x | → ∞.

(2)

where

- wave-type electric signal: f(x , t) = f (x)
∑

n ane
inω0t .

- ω = nω0 are the probing frequencies.
- χD is the characteristic function of the target D.
- ξ the effective thickness of the fish skin ∂Ω.
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Multifrequency Electrical Impedance Tomography

Similarities with the Multifrequency Electrical Impedance Tomography.
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The Multifrequency Electrical Impedance Tomography

The mathematical model:
Let

- Ω be the biological tissu under probe.

- D ⊂ Ω be the cancerous tissu with conductivity k(ω).

- Ω \ D be the normal tissu with conductivity k0.

The electric potential u(·, ω) solution ∇ · (k0 + (k(ω)− k0)χD(x))∇u(x , ω) = 0 in Ω,
k0∂νΩ

u(x , ω)(x) = f (x) on ∂Ω,∫
∂Ω

u(x , ω)ds = 0,
(3)

is generated by the input current f (x) on ∂Ω.

The mfEIT inverse problem is to recover D from measurements of
u(x , ω) on ∂Ω for ω ∈ [ω, ω], 0 ≤ ω < ω, that is

u(x , ω)|∂Ω, ω ∈ [ω, ω] −→ D
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Stability estimates for disks with a single frequency

Theorem (Bonnetier-Triki-Tsou 2016)

Let D and D̃ be two disks in Ω. Denoting by u (resp. ũ) the solution of
(3) with the inclusion D (resp. D̃). Let

ε = sup
x∈∂Ω

|u − ũ|.

Then, there exist constants C > 0 and 0 < µ < 1 such that,

|D 4 D̃| ≤ Cεµ. (4)

Here, 4 denotes the symmetric difference and the constants C , µ depend
only on Ω and f .
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Spectral decomposition with multifrequency measurements

Theorem (Ammari-Triki, 2016)

Let u(x , ω) be the unique solution to the system (3).
Then the following decomposition holds:

u(x , ω) = k−1
0 u0(x) +

∞∑
n=1

∫
∂Ω

f (z)w±n (z)ds(z)

k0 + λ±n (k(ω)− k0)
w±n (x),

= k−1
0 u0(x) + uf (k(ω), x), (5)

where u0(x) ∈ H1
�(Ω) depends only on f and D, and is the unique

solution to 
4u = 0 in Ω \ D,
∇u = 0 in D,
∂u
∂ν = f on ∂Ω,∫
∂Ω

uds = 0

(6)
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Stability estimate with multifrequency measurements

Theorem (Ammari-Triki, 2017)

Let D and D̃ be two inclusions in Ω. Denoting by u (resp. ũ) the
solution of (3) with the inclusion D (resp. D̃). Let

ε = sup
x∈∂Ω,ω∈[ω,ω]

|u − ũ|.

Then, there exist constants C > 0 and 0 < τ < 1 such that,

|D 4 D̃| ≤ C (
1

ln(ε−1)
)τ . (7)

Here, 4 denotes the symmetric difference and the constants C , τ depend
only on Ω and g .
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Optimization algorithm

Our scheme is essentially based on the minimizing of the functional

J(u) =
1

2

∫
∂Ω

|u − umeas |2ds(x),

where u is the simulated solution of (3) and umeas is the measurement.

FreeFem++ for numerical experiments.

P2 finite elements for the numerical resolution of the PDEs.

Spectral Fourier cut-off regularization method for the retrieval of the
shape of D.
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Reconstruction results with a single frequency
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We found in this case that µ = 0.96.
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Reconstruction results with multifrequency measurements
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Reconstruction results with multifrequency measurements
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Reconstruction results with multifrequency measurements
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Reconstruction results with multifrequency measurements
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Reconstruction results with multifrequency measurements
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Figure: Reconstruction: in Ω2

Chun-Hsiang Tsou Laboratoire Jean Kuntzmann (LJK) Target Identification using Electroreception



Introduction
Mathematical Model

Numerical results
References

Conclusion and perspectives

Conductivity profile reconstruction & Relative symmetric
differences

Conductivity profile reconstruction
• real value ellipse square concave small in Ω2

κ1 3 2.80971 3.36482 3.00287 6.65418 2.89787
κ2 2 1.79063 2.34197 1.96926 5.14671 1.86579
κ3 1 1.00212 0.987247 0.999658 1.13223 1.00446

Relative symmetric difference=
|Dreconst4Dtarget |
|Dtarget | .

• ellipse square concave small in Ω2

values 0.07055 0.12187 0.24299 0.19471 0.1205968
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Conclusion and perspectives

We have established stability estimates for the multifrequency impedance
tomography. The numerical calculations seem to be in agreement with
the theoretical results.

We plan

to study the case with multiple inclusions Dj , j ∈ J.

to extend the analysis to unbounded domains: the weak electric fish.

to derive fast algorithms for identifying the inclusions within a set of
given shapes.
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