
Modeling and Simulating Complex Materials
subject to Frictional Contact

Application to �brous and granular materials

Gilles Daviet
Advised by Florence Bertails-Decoubes

Équipe-projet Bipop
Inria — Laboratoire Jean Kuntzmann — Université Grenoble Alpes

December 15, 2016 — Montbonnot, France



Complex materials
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I Interact mostly through contacts with dry friction
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Transition from solid to liquid: landslides
Kaikoura, New Zealand, November 14 2016 c©GNS Science, RNZ
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Computer graphics for feature �lms
c©Disney, MGM

I Complex materials tedious to animate by hand

I Qualitative prediction rather than quantitative

I Requires robustness and computational e�ciency

I Avoid artifacts such as creeping motion or jittering
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Importance of dry friction for visual apperance
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Numerical simulation

How to simulate complex materials numerically?

Discrete Element Modeling

Simulate each constituant individually, and the interactions
between them

I Controllabilty

I Computational cost
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Numerical simulation
How to simulate complex materials numerically?

Continuum approach

Considers the “averaged” behavior of many constituants
(zoom-out).

I E.g. Navier-Stokes for Newtonian �uids

I Cost no longer depends on the system’s size

I Inhomogeneities must be relatively small

I Macroscopic model has to be derived
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Outline
1. E�cient simulation of frictional contacts in DEM

I Application to hair simulation

I Presented at Siggraph Asia 2011

2. Continuum simulation of dry granular materials

I Dense case: JNNFM 2016

I General case: Siggraph 2016

3. Continuum simulation of granular materials in a
Newtonian �uid

I Exploratory 2D work

I Submitted to “Powder and Grains 2017”
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Discrete Element Modeling with contacts

1. Choice of a mechanical model for each constituant

R
p

Ω

ex
ey

I Spatial discretization

I Internal and external forces

I Time integration

2. Choice of a mechanical model for the contacts
(A)

(B)

xA = xB

n

I Frictional contact law

I Numerical integration (with contacts)
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Discrete mechanical model
Example: rigid-body

R
p

Ω

ex
ey
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Discrete mechanical model
Example: slender inextensible elastic rod

Kirchho� rod
(continuous
model)

κi1, κ
i
2, τ

i

Super-helix model
[Bertails et al. 2006]

Discrete Elastic
Rods model

[Bergou et al. 2008]
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Time integration
Initial value problem

Continuous-time equations

dq
dt

= v

M(q)
dv
dt

= f(t,q, v)

+

(
∂C
∂q

)>
λ

q(t0) = q0

v(t0) = v0

C(q, t) = 0

I q generalized coordinates

I v generalized velocities
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Discrete-time integration

Compute q(t + ∆t), v(t + ∆t) from q(t) and v(t)

Explicit Euler

I Evaluate forces using positions
and velocities from beginning
of time-step

I Straightforward to implement

I Prone to parasitic oscillations
=⇒ requires small timesteps

x(t0)

x(t1)x(t2)
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Discrete-time integration

Compute q(t + ∆t), v(t + ∆t) from q(t) and v(t)

Implicit Euler

I Predict forces at the end of the
timestep t + ∆t

I Stable

I End-of-step position sati�es
kinematic constraints

I More expensive (root-�nding
algorithm)

x(t0)

x(t1)
x(t2)
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Discrete-time integration

Compute q(t + ∆t), v(t + ∆t) from q(t) and v(t)
Using an iterative approach: solve (one or more) linear systems

Without kinematic constraints

Mv(tk+1) = f

With kinematic constraints

{
Mv(tk+1) = f + C>λ

Cv(tk+1) = k

11



Contacts

(A)

(B)
xA = xB

n

Hypothesis

1. At most two objects, A et B

2. Smooth contact surface: well-de�ned normal n

→ local basis in which to express
I the gap function : h(q) = (xA − xB) · n

• Contact while h(q) ≤ 0

I the relative velocity u A/B

I the contact force r B→ A
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Compliance

Heuristically derived from elastic
response due to local deformation near
contact point with force proportional to
interpenetration distance

rN =
1
ξ
max(0,−h(q))

h(q)

rN

Drawbacks

I Non-zero penetration
I Leads to sti� equations hard to solve numerically

• Explicit =⇒ parasitic oscillations
• Implicit =⇒ ill-conditioned
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Rigid contact assumption


h(q) ≥ 0

h(q) > 0 =⇒ rN = 0

h(q) = 0 =⇒ rN ≥ 0 h(q)

rN

I Penetration-free

I Does not introduce any new timescale

Complementarity notation

0 ≤ rN ⊥ h(q) ≥ 0

Assuming inelastic impacts: (no rebound)

0 ≤ rN ⊥ uN ≥ 0

14



Rigid contact assumption


h(q) ≥ 0

h(q) > 0 =⇒ rN = 0

h(q) = 0 =⇒ rN ≥ 0 h(q)

rN

I Penetration-free

I Does not introduce any new timescale

Complementarity notation

0 ≤ rN ⊥ h(q) ≥ 0

Assuming inelastic impacts: (no rebound)

0 ≤ rN ⊥ uN ≥ 0

14



Rigid contact assumption


h(q) ≥ 0

h(q) > 0 =⇒ rN = 0

h(q) = 0 =⇒ rN ≥ 0 h(q)

rN

I Penetration-free

I Does not introduce any new timescale

Complementarity notation

0 ≤ rN ⊥ h(q) ≥ 0

Assuming inelastic impacts: (no rebound)

0 ≤ rN ⊥ uN ≥ 0

14



Friction

“Viscous” (�uid) friction

rT = −η(|u|)uT

I Opposed to velocity

I Drops to zero when velocity does

I Never comes to rest

uT

rT

“Dry” (solid) friction

I Opposed to velocity

I May persist when velocity is zero

I Now sliding while below threshold

uT

rT
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Coulomb frictional contact law ( 1780)

Dry friction with threshold proportional to
applied load:
Contact force r in second-order cone Kµ,

Kµ = {‖rT‖ ≤ µrN} ⊂ R3,

with µ the friction coe�cient.

(u, r) ∈ C(µ) ⇐⇒

take-o� r = 0 and uN > 0

sticking r ∈ Kµ and u = 0

sliding r ∈ ∂Kµ \ 0, uN = 0
and ∃α ≥ 0, uT = −α rT
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Constraints inside timestepping scheme

Unconstrained dynamics

Mv = f

Non-smooth contact dynamics (Moreau–Jean)

Discrete Coulomb Friction Problem (DCFP):
Mv = f + H>r

u = Hv + w

(ui, ri) ∈ C(µi) ∀1 ≤ i ≤ n

with H := ∂u
∂v . r impulse (integrated force over timestep).

17



Solving the DCFP
Coulomb friction problem: Non-convex, possibly
non-existence (if forcing term) or non-unicity of solutions.

I Disjunctive formulation not convenient (3n cases to
check)

I Functional reformulations f(r) = 0
• f non-di�erentiable (e.g. Alart–Curnier)
• Potentially quadratic convergence near solution
• In practice: not very robust

I Optimization-based

(ui, ri) ∈ C(µi) ⇐⇒ K 1
µi

3 ui + µi‖uiT‖ni ⊥ ri ∈ Kµi

• DCFP “close” to Second-Order Cone Quadatic
Program

• Outer �xed-point loop (Haslinger, Renouf, Cadoux) or
descent direction modi�cation

• e.g. Projected Gradient, Gauss–Seidel
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Gauss–Seidel strategy

Adaptation of block-coordinate descent to DCFP

I Solve contact-by-contact

I Slow asymptotic convergence

I ... but fast approximate solution =⇒ good for
graphics (and others)

I Requires one-contact solver

19
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Local Gauss–Seidel solver

Local problem

{
ui = Wri + bi

(ui, ri) ∈ C(µi) ⊂ Rd × Rd, d = 2 or 3

Problem: For Super-Helix model matrixW may be
ill-conditioned
=⇒ Need robust local solver (otherwise GS diverges)
Standard local solvers based on functional formulation fail too
often

20



Analytical local solver

For 1 contact: only three cases, disjunctive formulation
becomes tractable

I “Take-o�” and “sticking” case trivial to check
I “Sliding case”: solutions in roots of degree-4

polynomial
• Analytical solution (e.g. Ferrari algorithm)
• Eigenvalues of companion matrix

I If there exists a solution: we get it

I If local problem does not possesses a solution:
we’re stuck

21
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Newton-based solver

Solution: use analytical in combination with Newton solver.
We use Second-Order Cone Fischer–Burmeister function
(Fukushima et al. 2001)

I “smoother” than projection-based ones (e.g.
Alart-Curnier)

I Always yield an approximate solution

22



Performance comparisons
on 306 one-step problems

Note that we could not successfully run our full-scale
simulations with any method other than our approach.

Local solver Failure rate (%) GS Iters Time (ms)

Newton FB 4.9 72 484
Enumerative 1 67 1044

Our method 0 41 312

I Hybrid approach improves both robustness and time
e�ciency
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Full hair simulations
2000 super-helices — 4 mins / frame

24



Limitations

I Scalability
• Contacts scale super-linearly with number of �bers
• Contact solver cost scales super-linearly with number

of contacts
• Gauss–Seidel inherently sequential
• =⇒ Cannot simulate full groom

I Lots of phenomena not modeled yet
• Friction anisotropy ?
• Electrostatic forces ?
• Interaction with air ?
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We want to simulate much larger systems.

I We go back to simpler constituants: monodisperse
spherical grains

I Macroscopic models exist for granulars (quantitative
in certain scenarios [Jop 2006])

I Intuition: slope of sand heap does not depend of
number of grains (a twice bigger heap will maintain
the same slope )
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Example simulation
20M rendered particles – 30s per frame
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Granular regimes
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Continuum mechanics

u velocity �eld, ρ density �eld
Conservation of momentum:

ρ
Du
Dt︸︷︷︸

Inertial terms

−∇ ·

 σ︸︷︷︸
Stress tensor

 = f︸︷︷︸
External forces

Conservation of mass:

Dρ
Dt

= −ρ∇ · u

Rheology:
F(σ, ε︸︷︷︸

Strain

, ε̇︸︷︷︸
Strain rate

) = 0

dε
dt

:= ε̇ := D (u) :=
1
2

(
∇u + (∇u)>

)
29



Continuum �uid mechanics

Newtonian �uids (e.g. water)

I Possibly very viscous (honey, tar)

I Always come-back to �at rest
state

I Stress colinear to strain rate σ = ηε̇

ε̇T

σT

Yield-stress �uids (e.g. mayonnaise)

I Possibly non-zero stress with zero
strain-rate

I May maintain non-�at shape

ε̇T

σT
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Granular continuum

Dense granular materials are yield-stress �uids
I Pressure-dependent yield-stress (Coulomb-like)
|σT| ≤ µp
• Friction coe�cient linked to rest angle of granular

heap

I µ(I): Friction coe�cient varies with “inertial number”
• Account for relative grain size in dynamics

31



Continuum simulation of granular materials

As visco-plastic �ows

I Most assume dense �ow (do not allow grains to
separate)

I “Standard” numerical methods for incompressible
�ows: Augmented Lagrangian or regularization
• e.g. [Lagrée et al. 2011], [Ionescu et al. 2015]

I Computer Graphics: [Zhu and Bridson 2005]
• [Narain et al. 2010] relaxes incompressibility

As elasto-plastic solids

I From soil mechanics

I Stress direction from elasticity

I Sti� grains: very small elasticity time-scale

I e.g. [Dunatunga et al. 2015], Computer Graphics: [Klar 2016]
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Our approach

Using [Narain
2010]

Our approach

Key features

We build upon [Narain et al. 2010]:

I Inelastic approach: we assume an
in�nite compression Young modulus
for the compacted material

I Instanteous and implicit switching
between �ow regimes using hard
constraints.

Main di�erences:

I Exact Drucker–Prager frictional law

I Spatial discretization from variational
formulation
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Distinct regimes
φ(x, t) volume fraction �eld: fraction of space occupied by the
grains.

φ < φmax : Gaseous regime, energy dissipation through
random collisions
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Drucker–Prager viscoplastic rheology

σtot = 2ηε̇︸︷︷︸
Newtonian part

+ τ − pI,︸ ︷︷ ︸
Contact stress

Frictional stress τ

Drucker-Prager yield criterion with friction coe�cient µ τ = µp
Dev ε̇
|Dev ε̇|

if Dev ε̇ 6= 0 (Liquid)

|τ | ≤ µp if Dev ε̇ = 0 (Rigid)

Pressure p

0 ≤ φmax − φ ⊥ p ≥ 0 (Narain et al. 2010)
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Conservation equations

Conservation of mass

Dφ
Dt

+ φ∇ · [u] = 0

Conservation of momentum

ρφ
Du
Dt
−∇ ·

φ (ηε̇+ τ − pI)︸ ︷︷ ︸
σtot

 = ρφg

36



Time discretization

Semi-implicit integration

For each timestep ∆t

(i) Solve momentum balance using the current volume
fraction �eld φ(t) so that the rheology constraints hold at
the end of the timestep
• Get u(t + ∆t), p(t + ∆t), τ (t + ∆t)

(ii) Solve the mass conservation equation using the newly
computed velocity �eld u(t + ∆t) to get φ(t + ∆t)

• Hybrid method: move particles
• We use APIC: A�ne Particle-in-Cell [Jiang et al. 2015]
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Discrete-time rheology
Linearizing the change in volume fraction over the timestep

I λ := pI− τ homogeneous to a stress

I γ := φ(t)ε̇+ 1
d
φmax−φ(t)

∆t
I homogeneous

to a strain rate

‘

A

B
xc

f

t
n

u

Gaseous{
γ ≥ 0

λ = 0

Solid{
γ = 0

λ ∈ Kµ

Liquid
Trγ = 0

λ ∈ ∂Kµ
Devλ = −αDevγ, α ≥ 0

Equivalent to Signorini-Coulomb frictional contact law in
discrete mechanics.
(λ ∼ f force, γ ∼ u relative velocity, Tr ∼ normal part, Dev ∼
tangential part)
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Spatial discretization

Wemust restrict ourselves to a limited number of degrees of
freedom for:

I Scalar volume fraction �eld

I Vector velocity �eld

I Symmetric tensor stress and strain �eld

39



Spatial discretization

Particle-based
methods
(e.g. SPH)

[Alduán & Otaduy
2011]

Mesh-based
methods
(e.g. FEM)

[Ionescu et al. 2015]
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Spatial discretization

Hybrid methods: Particles for material state + mesh for
velocities

[Zhu and
Bridson
2005]

[Narain et al.
2010]

[Klar et al. 2016]

We use the Material Point Method (MPM)

I For granulars: [Wieckowski 1999], [Dunatunga et al. 2015],
[Klar et al. 2016] (concurrently to this work)
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MPM: Principle

Volume fraction �eld φ discretized as a sum of Dirac point
masses:

φ(x) =
∑
p

Vp︸︷︷︸
Particle volume

δ(x− xp︸︷︷︸
Particle position

)

Integration over the simulation domain Ω:∫
Ω
φv =

∑
p

Vpv(xp)

Interpretation: xp ∼ quadrature points and Vp corresponding
weights
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MPM: Application

Weak momentum balance

ρ

∆t
φu−∇ · [φ (ηD (u)− λ)] = ρφf

FEM: multiplying by a test function v and integrating over Ω +
Green formula:∫

Ω

ρ

∆t
φu.v +

∫
Ω
φ (ηD (u)− λ) : D (v) =

∫
Ω
ρφf.v ∀v

MPM: φ(x) =
∑

p Vpδ(x− xp)

∑
p Vp

(
ρ

∆t
u.v + ηD (u) : D (v)

)
(xp)−

∑
p Vp(λ : D (v))(xp)

= ρ
∑
p

Vp(f.v)(xp) ∀v
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Basis functions

We still need to discretize u (velocity, vector) and λ and τ
(stress / strain, tensors) using a �nite number of degrees of
freedom (grid nodes).

u(x) =
∑
i

Nv
i (x)ui, ui = u(yi), (yi)degrees of freedom

yi yi+1yi−1 yi yi+1yi−1 yi− 1
2

yi+ 1
2

yi yi+1yi−1

I A�ects well-posedness of the numerical system,
spatial convergence and computational performance

I May create visual artifacts
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Cohesion
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Discrete System

Concatenating all unknown components and writing
constraints at stress quadrature points leads to


Au = f + B>λ (Momentum balance)

γ = Bu + k (Strain from velocity)

(γ
i
,λi) ∈ DP (µ) ∀i = 1 . . .n (Strain–stress relationship)

I Similar to discrete contact mechanics with Coulomb
friction
• . . . in dimension 6
• . . .A−1 may be dense

• use of proximal or interior-point algorithms
• or low-Newtonian viscosity approximation

• In practice: Matrix-free Gauss–Seidel solver with
Fischer-Burmeister local solver
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Silo

Constant discharge rate

0 2 4 6
0

0.5

1

t

V
V0

µ = 0
µ = 0.4
µ = 0.6
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Rigid-body coupling
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Conclusion

I Very stable simulations at a reasonable
computational cost

Perspectives

I Explore other shape functions to improve
• Volume preservation
• Visual artifacts in degenerate cases

I Interactions with surrounding �uid (air, water)
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Outline
1. E�cient simulation of frictional contacts in DEM

I Application to hair simulation

I Presented at Siggraph Asia 2011

2. Continuum simulation of dry granular materials

I Dense case: JNNFM 2016

I General case: Siggraph 2016

3. Continuum simulation of granular materials in a
Newtonian �uid

I Exploratory 2D work

I Submitted to “Powder and Grains 2017”
49



Diphasic simulation

Motivation

I Qualitative e�ects of Newtonian �uid on granular
collapse

I Assume Drucker–Prager still holds at maximal
volume fraction

I Phase velocities must di�er to allow compression

Two-velocities model

I Conservation of momentum and mass for each phase
I Interactions terms:

• Stokes drag: fd = η(φ)(uf − ug)
• Buoyancy

I Discrete problem: DCFP with linear constraints
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Results

51



Concluding Remarks
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Contributions

E�cient treatment of friction contact in hair dynamics

I New one-contact solvers

I Miscellaneous re�nements of Gauss–Seidel and
Projected-Gradient methods

Non-smooth simulation of dry granular �ows

I Leveraging tools from discrete contact dynamics

I Taking into account di�erent regimes

Non-smooth simulation of diphasic granular �ows

I Model and numerical method

52



Conclusion

I Dry friction necessary for realism
I Implicit handling of rigid frictional contacts

• No jittering or creeping motion
• Better numerical conditionning
• Avoids having to simulate elasticity timescale

I Non-smooth contact dynamics directly applicable to
continuum simulation
• Similar modeling framework
• Same discrete problem structure

Perspectives

I Continuum model for hair dynamics

I Scalable DCFP solver
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