Contrôle de systèmes hyperboliques par analyse Lyapunov

Pierre-Olivier Lamare

Directeurs de thèse : Antoine Girard et Christophe Prieur







#### 28 Septembre 2015

Ce travail a été soutenu par le LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) financé par le programme français Investissement d'avenir

## Contexte

Étude de systèmes hyperboliques linéaires, c'est-à-dire

$$\partial_t y(t,x) + \Lambda(t,x)\partial_x y(t,x) = F(t,x)y(t,x), \qquad (1)$$

avec  $t \ge 0$ ,  $x \in [0, 1]$ ,  $y \in \mathbb{R}^n$ , avec condition aux bords

$$B(y(t,0), y(t,1), u(t)) = 0, \qquad (2)$$

où  $B \in C^1(\mathcal{Z}, \mathcal{Z}, \mathbb{R}^q; \mathbb{R}^n)$ ,  $\mathcal{Z}$  un sous-ensemble connecté non vide de  $\mathbb{R}^n$ , et condition initiale

$$y(0,x) = y^0(x)$$
. (3)

## Exemples de systèmes hyperboliques

- Contrôle de traffic routier [Bressan, Han; 11], [Garavello, Piccoli; 06], [Gugat, Herty, Klar, Leugering; 06]...
- Contrôle de réseaux de gaz [Gugat, Herty; 11], [Gugat, Dick, Leugering; 11]...
- Contrôle de réseaux d'irrigation, équations de Saint-Venant (exemple considéré dans cette présentation) [Bastin, Coron, d'Andréa-Novel; 09]...

- I. Calcul de fonctions Lyapunov par optimisation
- II. Systèmes hyperboliques à commutation
- III. Génération de trajectoire et poursuite
- IV. Conclusion et perspectives

## Convergence exponentielle globale

Soit *E* un espace fonctionnel de fonctions  $y : [0, 1] \to \mathbb{R}^n$  dont la norme associée est notée  $|\cdot|_E$ .

#### Définition

Le système (1)-(3) est Globalement Exponentiellement Convergent pour  $|\cdot|_E$  si  $\exists \nu > 0$  et une fonction  $g : \mathbb{R}^+ \to \mathbb{R}^+$  tels que,  $\forall y^0 \in E$ , les solutions de (1)-(3) satisfont  $|y(t, \cdot)|_E \leq e^{-\nu t}g(|y^0|_E)$ ,  $\forall t \in \mathbb{R}^+$ . (4) Le système (1)-(3) est dit Globallement Exponentiellement Stable (GES) si g peut être choisie linéaire.

## I. Calcul de fonctions Lyapunov par optimisation

Considérons le cas 
$$\Lambda(t, x) = \Lambda(x)$$
,  $F(t, x) = F(x)$  et  
 $B(y(t,0), y(t,1), u(t)) = \begin{bmatrix} y^-(t,1) \\ y^+(t,0) \end{bmatrix} - G \begin{bmatrix} y^-(t,0) \\ y^+(t,1) \end{bmatrix}$ .

Soit la fonction

$$V(y) = \int_0^1 y^{\top}(x) \, |\Lambda(x)|^{-1} \, \mathcal{Q}(x) y(x) dx \,, \tag{5}$$

où le noyau peut être « exponentiel » [Coron, Bastin et d'Andréa-Novel ; 08]

$$\mathcal{Q}(x) = \operatorname{diag}\left[e^{2\mu x}Q^{-}, e^{-2\mu x}Q^{+}\right]. \tag{6}$$

## Analyse de stabilité

En supposant  $Q(x)\Lambda(x) = \Lambda(x)Q(x)$ , la dérivée temporelle de V le long des trajectoires du système (1), (2) est

$$\dot{V} = 2 \int_{0}^{1} y_{t}^{\top}(t,x) |\Lambda(x)|^{-1} \mathcal{Q}(x) y(t,x) dx$$
  
=  $-2 \int_{0}^{1} y^{\top}(t,x) \tilde{I}_{n,m} \mathcal{Q}(x) y_{x}(t,x) dx$   
+  $2 \int_{0}^{1} y^{\top}(t,x) \mathcal{Q}(x) |\Lambda(x)|^{-1} F(x) y(t,x) dx$ . (7)

## Fin du calcul

On a 
$$-2y^{\top}\tilde{l}_{n,m}Qy_{x} = -(y^{\top}\tilde{l}_{n,m}Qy)_{x} - 2\mu y^{\top}Qy$$
 aussi  
 $\dot{V} = \begin{bmatrix} y^{-}(t,0) \\ y^{+}(t,1) \end{bmatrix}^{\top} \begin{bmatrix} I_{m} & 0_{m,n-m} \\ G_{+-} & G_{++} \end{bmatrix}^{\top} \tilde{l}_{n,m}Q(0) \begin{bmatrix} I_{m} & 0_{m,n-m} \\ G_{+-} & G_{++} \end{bmatrix}$   
 $-\begin{bmatrix} G_{--} & G_{-+} \\ 0_{n-m,m} & I_{n-m} \end{bmatrix}^{\top} \tilde{l}_{n,m}Q(1) \begin{bmatrix} G_{--} & G_{-+} \\ 0_{n-m,m} & I_{n-m} \end{bmatrix} \begin{bmatrix} y^{-}(t,0) \\ y^{+}(t,1) \end{bmatrix}$   
 $+2\int_{0}^{1} y^{\top}(t,x)Q(x) |\Lambda(x)|^{-1} F(x)y(t,x)dx$   
 $-2\mu\int_{0}^{1} y^{\top}(t,x)Q(x)y(t,x)dx.$  (8)

## Conditions de stabilité

#### Proposition

Si  $\exists \nu > 0$ ,  $\mu \in \mathbb{R}$  et des mat. sym. déf. pos.  $Q^- \in \mathbb{R}^{m \times m}$  et  $Q^+ \in \mathbb{R}^{(n-m) \times (n-m)}$  tels que pour  $\mathcal{Q}(x)$  donnée par (6) les conditions suivantes sont satisfaites  $\forall x \in [0, 1]$ ,

$$\begin{aligned} \mathcal{Q}(x)\Lambda(x) &= \Lambda(x)\mathcal{Q}(x), \qquad (9) \\ &- 2\mu\mathcal{Q}(x) + F^{\top}(x) |\Lambda(x)|^{-1} \mathcal{Q}(x) \\ &+ \mathcal{Q}(x) |\Lambda(x)|^{-1} F(x) \leq -2\nu |\Lambda(x)|^{-1} \mathcal{Q}(x), \qquad (10) \\ &\left[ \begin{smallmatrix} I_m & 0_{m,n-m} \\ G_{+-} & G_{++} \end{smallmatrix} \right]^{\top} \tilde{I}_{n,m} \mathcal{Q}(0) \left[ \begin{smallmatrix} I_m & 0_{m,n-m} \\ G_{+-} & G_{++} \end{smallmatrix} \right] \\ &\leq \begin{bmatrix} G_{--} & G_{-+} \\ 0_{n-m,m} & I_{n-m} \end{smallmatrix} \right]^{\top} \tilde{I}_{n,m} \mathcal{Q}(1) \begin{bmatrix} G_{--} & G_{-+} \\ 0_{n-m,m} & I_{n-m} \end{smallmatrix} ], \qquad (11) \end{aligned}$$
alors le système (1)–(3) est GES pour la norme  $L^2$ .

Relation entre conditions de stabilité et systèmes LPV.

#### Proposition

Soit  $\mu \in \mathbb{R}$ . Les conditions (10), (11) sont satisfaites ssi le système LPV temps-continu

$$\dot{p}(t) = \operatorname{diag}\left[e^{2\mu x}I_m, e^{-2\mu x}I_{n-m}\right]\left(|\Lambda(x)|^{-1}F(x) - \mu I_n\right)p(t),$$
(12)

$$x \in [0, 1]$$
, et le système temps-discret  
 $h(t+1) = \text{diag} \left[ I_m, e^{-\mu} I_{n-m} \right] e^{\mu} G \text{diag} \left[ I_m, e^{\mu} I_{n-m} \right] h(t)$  (13)  
partagent une mat. Lyapunov diag. par bloc diag  $[Q^-, Q^+]$ , où  
 $Q^- \in \mathbb{R}^{m \times m}$  et  $Q^+ \in \mathbb{R}^{(n-m) \times (n-m)}$  sont sym. déf. pos.

## Sur-approximation des contraintes

#### Pb : $x \in [0, 1]$ dans inégalités matricielles $\Rightarrow$ infinité de contraintes

#### Solution : Sur-approximer par des polytopes

Voir [Hetel, Daafouz, lung; 06] pour les systèmes à retard.

## Sur-approximation des contraintes

À  $\mu$  fixé dans  $\mathbb{R},~Q^-$  dans  $\mathbb{R}^{m\times m}$  et  $Q^+$  dans  $\mathbb{R}^{(n-m)\times (n-m)},$  on note

$$Q_{ij} = \operatorname{diag} \left[ e^{2\mu i} Q^{-}, e^{-2\mu j} Q^{+} \right], \quad i, j = 0, 1.$$
 (14)



Figure: Sur-approximation de la « courbe » Q(x) dans le plan  $(Q^-, Q^+)$ .

## Sur-approximation des contraintes

À  $\mu$  fixé dans  $\mathbb{R},~Q^-$  dans  $\mathbb{R}^{m\times m}$  et  $Q^+$  dans  $\mathbb{R}^{(n-m)\times (n-m)},$  on note

$$Q_{ij} = \operatorname{diag} \left[ e^{2\mu i} Q^{-}, e^{-2\mu j} Q^{+} \right], \quad i, j = 0, 1.$$
 (14)



Figure: Sur-approximation de la « courbe » Q(x) dans le plan  $(Q^-, Q^+)$ .

#### Proposition (Cas F et $\Lambda$ constants)

Si  $\exists \nu > 0$ ,  $\mu \in \mathbb{R}$  et des mat. sym. déf. pos.  $Q^- \in \mathbb{R}^{m \times m}$  et  $Q^+ \in \mathbb{R}^{(n-m) \times (n-m)}$  tels que

$$Q_{ij}\Lambda = \Lambda Q_{ij} , \qquad (15)$$

$$-2\mu Q_{ij} + F^{\top} |\Lambda|^{-1} Q_{ij} + Q_{ij} |\Lambda|^{-1} F \le -2\nu |\Lambda|^{-1} Q_{ij}, \qquad (16)$$

soient satisfaits  $\forall (i,j) \in \{(0,0), (0,1), (1,1)\}$  si  $\mu > 0$  et  $\forall (i,j) \in \{(0,0), (1,0), (1,1)\}$  si  $\mu < 0$ , avec  $\begin{bmatrix} I_m & 0_{m,n-m} \\ G_{+-} & G_{++} \end{bmatrix}^\top Q_{00} \tilde{I}_{n,m} \begin{bmatrix} I_m & 0_{m,n-m} \\ G_{+-} & G_{++} \end{bmatrix}$   $\leq \begin{bmatrix} G_{--} & G_{-+} \\ 0_{n-m,m} & I_{n-m} \end{bmatrix}^\top Q_{11} \tilde{I}_{n,m} \begin{bmatrix} G_{--} & G_{-+} \\ 0_{n-m,m} & I_{n-m} \end{bmatrix}, \quad (17)$ alors les conditions (9), (10) et (11) sont satisfaites  $\forall x \in [0,1].$ 

## Exemple



Figure: Évolution de  $\nu$  en fonction de  $\mu$ .

## Synthèse de contrôleurs : contrôle frontière

Supposons maintenant que

$$G = T + LK_B, \qquad (18)$$

où les matrices  $T \in \mathbb{R}^{n \times n}$ ,  $L \in \mathbb{R}^{n \times q}$  (n > q) sont données et la matrice  $K_B \in \mathbb{R}^{q \times n}$  doit être construite telle que le système (1)–(3) avec la condition au bord (2) est GES.

#### Théorème

Si  $\exists \nu > 0$ ,  $\mu \in \mathbb{R}$  une mat.  $U \in \mathbb{R}^{q \times n}$  et des mat. sym. déf. pos.  $S^- \in \mathbb{R}^{m \times m}$ ,  $S^+ \in \mathbb{R}^{(n-m) \times (n-m)}$  tels que, avec  $S(x) = \text{diag}\left[e^{-2\mu x}S^{-}, e^{2\mu x}S^{+}\right]$ , les conditions suivantes sont satisfaites,  $\forall x \in [0, 1]$ ,  $S(x)\Lambda(x) = \Lambda(x)S(x)$ . (19) $-2\mu S(x) + S(x)F^{\top}(x) |\Lambda(x)|^{-1}$  $+ |\Lambda(x)|^{-1} F(x)S(x) < -2\nu S(x) |\Lambda(x)|^{-1}$ (20) $\left[ egin{array}{c} ext{diag} \left[ S^-, e^{-2\mu}S^+ 
ight] & (TS(0) + LU)^{ op} \ TS(0) + LU & ext{diag} \left[ e^{-2\mu}S^-, S^+ 
ight] \end{array} 
ight] \geq 0 \,,$ (21)alors le contrôle frontière donné par (18) est tel qu'avec  $K_{B} = US^{-1}(0)$ . (22)le système (1)–(3) est GES pour la norme  $L^2$ .

## Exemple synthèse de contrôleur frontière

Soient les matrices

$$\begin{split} \Lambda &= \operatorname{diag}\left[-1,2\right], \ F = \begin{bmatrix} -0.1 & 0.1 \\ 0.5 & -0.8 \end{bmatrix}, \\ T &= \begin{bmatrix} -0.5 & 1 \\ 0.5 & 1 \end{bmatrix}, \ L^{\top} = \begin{bmatrix} 0.5 & -1 \end{bmatrix} \\ \text{On choisit } \nu &= 0.1. \ \text{L'algorithme donne} \\ \mu &= 0.1580, \\ \mathcal{K}_B &= \begin{bmatrix} 0.5596 & 0.7910 \end{bmatrix}, \end{split}$$

ainsi

$$G = \begin{bmatrix} -0.2202 & 1.3955\\ -0.0596 & 0.2090 \end{bmatrix}.$$
 (23)



Figure: Évolution de  $y_1$  et  $y_2$ .

- Les inégalités matricielles pour la synthèse de contrôleurs peuvent être sur-approximées comme dans le cas de l'analyse.
- Les résultats précédents peuvent être adaptés avec le noyau
   Q(x) affine.
- Dans le cas où F et Λ ne sont pas constantes les résultats de sur-approximations sont construits en supposant que les matrices paramétrées

$$W(x) = |\Lambda(x)|^{-1} F(x),$$
 (24)

appartiennent, pour tout  $x \in [0, 1]$  à l'enveloppe convexe

$$\mathcal{W} := \left\{ W : W = \sum_{i=1}^{N} \alpha_i W_i, \sum_{i=1}^{N} \alpha_i = 1 \right\}, \quad (25)$$
  
r des matrices  $W_i, i = 1, \dots, N$  données.

- Les inégalités matricielles pour la synthèse de contrôleurs peuvent être sur-approximées comme dans le cas de l'analyse.
- Les résultats précédents peuvent être adaptés avec le noyau
   Q(x) affine.
- Dans le cas où F et Λ ne sont pas constantes les résultats de sur-approximations sont construits en supposant que les matrices paramétrées

$$W(x) = |\Lambda(x)|^{-1} F(x),$$
 (24)

appartiennent, pour tout  $x \in [0, 1]$  à l'enveloppe convexe

$$\mathcal{W} := \left\{ W : W = \sum_{i=1}^{N} \alpha_i W_i, \sum_{i=1}^{N} \alpha_i = 1 \right\}, \quad (25)$$
  
r des matrices  $W_i, i = 1, \dots, N$  données.

- Les inégalités matricielles pour la synthèse de contrôleurs peuvent être sur-approximées comme dans le cas de l'analyse.
- Les résultats précédents peuvent être adaptés avec le noyau
   Q(x) affine.
- Dans le cas où F et Λ ne sont pas constantes les résultats de sur-approximations sont construits en supposant que les matrices paramétrées

$$W(x) = |\Lambda(x)|^{-1} F(x),$$
 (24)

appartiennent, pour tout  $x \in [0, 1]$  à l'enveloppe convexe

$$\mathcal{W} := \left\{ W : W = \sum_{i=1}^{N} \alpha_i W_i, \sum_{i=1}^{N} \alpha_i = 1 \right\}, \qquad (25)$$

pour des matrices  $W_i$ ,  $i = 1, \ldots, N$  données.

## Plan

- I. Calcul de fonctions Lyapunov par optimisation
- II. Systèmes hyperboliques à commutation
- III. Génération de trajectoire et poursuite
- IV. Conclusion et perspectives

Considérons le système hyperbolique suivant

$$\partial_t y(t,x) + \Lambda(t)\partial_x y(t,x) = 0,$$
 (26)

 $t\geq 0$ ,  $x\in [0,1]$ ,  $y\in \mathbb{R}^n$  et

$$0_n < \Lambda(t), \quad \forall t \ge 0.$$

Le phénomène de commutation apparait dans la condition frontière

$$y(t,0) = G_i y(t,1),$$
 (27)

où  $i \in \mathcal{I} := \{1, \dots, N\}$ . La condition initiale est définie par

$$y(0,x) = y^{0}(x), \quad x \in [0,1]$$
 (28)

$$\overline{\Lambda} = \sup_{t \in \mathbb{R}^+} \Lambda(t)$$
(29)

$$\underline{\Lambda} = \inf_{t \in \mathbb{R}^+} \Lambda(t) \,. \tag{30}$$

Considérons le système hyperbolique suivant

$$\partial_t y(t,x) + \Lambda(t)\partial_x y(t,x) = 0,$$
 (26)

 $t\geq 0$ ,  $x\in [0,1]$ ,  $y\in \mathbb{R}^n$  et

$$0_n < \Lambda(t), \quad \forall t \geq 0.$$

Le phénomène de commutation apparait dans la condition frontière

$$y(t,0) = G_i y(t,1),$$
 (27)

où  $i \in \mathcal{I} := \{1, \dots, N\}$ . La condition initiale est définie par

$$y(0,x) = y^0(x), \quad x \in [0,1]$$
 (28)

$$\overline{\Lambda} = \sup_{t \in \mathbb{R}^+} \Lambda(t)$$
(29)  
$$\Lambda = \inf \Lambda(t).$$
(30)

Considérons le système hyperbolique suivant

$$\partial_t y(t,x) + \Lambda(t)\partial_x y(t,x) = 0,$$
 (26)

 $t\geq 0$ ,  $x\in [0,1]$ ,  $y\in \mathbb{R}^n$  et

$$0_n < \Lambda(t), \quad \forall t \ge 0.$$

Le phénomène de commutation apparait dans la condition frontière

$$y(t,0) = G_i y(t,1),$$
 (27)

où  $i \in \mathcal{I} := \{1, \dots, N\}$ . La condition initiale est définie par

$$y(0,x) = y^0(x), \quad x \in [0,1]$$
 (28)

$$\overline{\Lambda} = \sup_{t \in \mathbb{R}^+} \Lambda(t)$$
(29)  
$$\underline{\Lambda} = \inf_{t \in \mathbb{R}^+} \Lambda(t) .$$
(30)

Considérons le système hyperbolique suivant

$$\partial_t y(t,x) + \Lambda(t)\partial_x y(t,x) = 0,$$
 (26)

 $t\geq 0$ ,  $x\in [0,1]$ ,  $y\in \mathbb{R}^n$  et

$$0_n < \Lambda(t), \quad \forall t \ge 0.$$

Le phénomène de commutation apparait dans la condition frontière

$$y(t,0) = G_i y(t,1),$$
 (27)

où  $i \in \mathcal{I} := \{1, \dots, N\}$ . La condition initiale est définie par

$$y(0,x) = y^0(x), \quad x \in [0,1]$$
 (28)

$$\overline{\Lambda} = \sup_{t \in \mathbb{R}^+} \Lambda(t)$$
 (29)

$$\underline{\Lambda} = \inf_{t \in \mathbb{R}^+} \Lambda(t) \,. \tag{30}$$

## Signal de commutation

## Le signal de commutation est continue par morceaux $\sigma(t): \mathbb{R}^+ \to \mathcal{I} := \{1, \dots, N\}.$

On note  $S(\mathbb{R}^+, \mathcal{I})$  l'ensemble des signaux de commutation tels que, sur chaque intervalle borné de  $\mathbb{R}^+$ , il y a un nombre fini de points de discontinuités.

⇒ Essentiel pour prouver l'existence de solution. [Hante, Leugering, Seidman; 09]

## Signal de commutation

Le signal de commutation est continue par morceaux  $\sigma(t): \mathbb{R}^+ \to \mathcal{I} := \{1, \dots, N\}.$ 

On note  $\mathcal{S}(\mathbb{R}^+, \mathcal{I})$  l'ensemble des signaux de commutation tels que, sur chaque intervalle borné de  $\mathbb{R}^+$ , il y a un nombre fini de points de discontinuités.

⇒ Essentiel pour prouver l'existence de solution. [Hante, Leugering, Seidman; 09]

## Signal de commutation

Le signal de commutation est continue par morceaux  $\sigma(t): \mathbb{R}^+ \to \mathcal{I} := \{1, \dots, N\}.$ 

On note  $\mathcal{S}(\mathbb{R}^+, \mathcal{I})$  l'ensemble des signaux de commutation tels que, sur chaque intervalle borné de  $\mathbb{R}^+$ , il y a un nombre fini de points de discontinuités.

⇒ Essentiel pour prouver l'existence de solution. [Hante, Leugering, Seidman; 09]

## Motivations

- ► Considérer des contrôleurs discontinus ⇒ + de degrés de liberté / contrôleurs continus
- ightarrow ightarrow meilleure vitesse de convergence [Suvarov et al.; 12]

Inconvénient : question de l'existence de solutions difficile pour les systèmes commutés en dimension infinie. Voir par exemple [Hante, Sigalotti; 11], [Daafouz, Valein,

Tucsnak ; 14]

## Dans la littérature

Il existe peu de travaux pour le cas linéaire.

Premiers travaux pour la classe  $\mathcal{S}(\mathbb{R}^+, \mathcal{I})$ .

Leur objectif : condition sur *G<sub>i</sub>* pour qu'il existe une solution stable au système (26)–(28). [Hante, Leugering, Seidman; 09], [Amin, Hante, Bayen; 12], [Suvarov et al.; 12], [Prieur, Girard, Witrant; 14]

## Objectif : stabilisation

Ne pas considérer un ensemble de signaux de commutation, mais construire une loi de retour commutée pour stabiliser le système

#### Stabilisation

Construire  $\sigma = \sigma[y]$  tel que  $\exists \alpha > 0$  et une fonction  $g : \mathbb{R}^+ \to \mathbb{R}^+$ tels que la solution de (26)–(28) existe et l'inégalité  $|y(.,t)|_{L^2(0,1)} \leq e^{-\alpha t}g\left(|y^0|_{L^2(0,1)}\right),$  (31) est satisfaite  $\forall t \geq 0$ 

## Objectif : stabilisation

Ne pas considérer un ensemble de signaux de commutation, mais construire une loi de retour commutée pour stabiliser le système

#### Stabilisation

Construire  $\sigma = \sigma[y]$  tel que  $\exists \alpha > 0$  et une fonction  $g : \mathbb{R}^+ \to \mathbb{R}^+$ tels que la solution de (26)–(28) existe et l'inégalité  $|y(.,t)|_{L^2(0,1)} \leq e^{-\alpha t}g\left(|y^0|_{L^2(0,1)}\right),$  (31) est satisfaite  $\forall t > 0.$ 

## Stabilisabilité

On considère la fonction Lyapunov (5) avec le noyau exponentiel. On a

$$\begin{split} \dot{V} &= -2 \int_0^1 y(t,x)^\top Q \Lambda(t) \partial_x y(t,x) e^{-\mu x} dx \\ &= - \left[ y(t,x)^\top Q \Lambda(t) y(t,x) e^{-\mu x} \right]_0^1 \\ &- \mu \int_0^1 y(t,x)^\top Q \Lambda(t) y(t,x) e^{-\mu x} dx \\ &\leq y(t,1)^\top \left[ G_i^\top Q \overline{\Lambda} G_i - Q \underline{\Lambda} e^{-\mu} \right] y(t,1) - \mu \lambda V \,. \end{split}$$
avec  $\lambda = \min \operatorname{spec}(\underline{\Lambda}).$ 

Soit la valeur de mesure définie par w(t) = y(t, 1) et  $\alpha = \frac{1}{2}\lambda\mu$  on a

#### Lemme

$$\dot{V} \leq -2lpha V + q_i(w(t))$$
  
où  $q_i(w(t)) = w(t)^{\top} \left[ G_i^{\top} Q \overline{\Lambda} G_i - Q \underline{\Lambda} e^{-\mu} \right] w(t).$ 

Avec ce lemme il est naturel de considérer la loi de commutation pour les systèmes temps discret en dimension finie [Geromel, Colaneri; 06]

$$\sigma[w](t) = \arg\min_{i \in \mathcal{I}} q_i(w(t))$$
(32)

On définit le simplexe

$$\Gamma := \left\{ \gamma \in \mathbb{R}^N \left| \sum_{i=1}^N \gamma_i = 1, \gamma_i \ge 0 \right\} \right.$$
(33)

Soit la valeur de mesure définie par w(t) = y(t, 1) et  $\alpha = \frac{1}{2}\lambda\mu$  on a

#### Lemme

$$\dot{V} \leq -2\alpha V + q_i(w(t))$$
  
où  $q_i(w(t)) = w(t)^\top \left[G_i^\top Q \overline{\Lambda} G_i - Q \underline{\Lambda} e^{-\mu}\right] w(t).$ 

Avec ce lemme il est naturel de considérer la loi de commutation pour les systèmes temps discret en dimension finie [Geromel, Colaneri; 06]

$$\sigma[w](t) = \arg\min_{i \in \mathcal{I}} q_i(w(t))$$
(32)

On définit le simplexe

$$\Gamma := \left\{ \gamma \in \mathbb{R}^N \left| \sum_{i=1}^N \gamma_i = 1, \gamma_i \ge 0 \right\} \right.$$
(33)

Soit la valeur de mesure définie par w(t) = y(t, 1) et  $\alpha = \frac{1}{2}\lambda\mu$  on a

#### Lemme

OL

$$\dot{V} \leq -2lpha V + q_i(w(t))$$
  
 $\dot{u} q_i(w(t)) = w(t)^\top \left[G_i^\top Q \overline{\Lambda} G_i - Q \underline{\Lambda} e^{-\mu}\right] w(t).$ 

Avec ce lemme il est naturel de considérer la loi de commutation pour les systèmes temps discret en dimension finie [Geromel, Colaneri; 06]

$$\sigma[w](t) = \arg\min_{i \in \mathcal{I}} q_i(w(t))$$
(32)

On définit le simplexe

$$\Gamma := \left\{ \gamma \in \mathbb{R}^{N} \left| \sum_{i=1}^{N} \gamma_{i} = 1, \gamma_{i} \ge 0 \right. \right\} .$$
(33)

# Hypothèse 1 Il existe $\gamma \in \Gamma$ , une mat. diag. déf. pos. Q et $\mu > 0$ tels que $\sum_{j=1}^{N} \gamma_j \left( G_j^\top Q \overline{\Lambda} G_j - e^{-\mu} Q \underline{\Lambda} \right) \leq 0.$

#### Proposition (Lamare, Girard, Prieur, SICON 2015)

Sous l'hypothèse 1, le système (26)–(28) avec la loi de commutation (32) est GES tant que la solution existe. Soit Vcomme proposée,  $\exists c > 0$  tel que l'inégalité suivante

$$|y(.,t)|_{L^{2}(0,1)} \leq c e^{-\mu\lambda t} |y^{0}|_{L^{2}(0,1)} , \qquad (34)$$

est satisfaite tant que la solution existe.

Hypothèse 1  
Il existe 
$$\gamma \in \Gamma$$
, une mat. diag. déf. pos.  $Q$  et  $\mu > 0$  tels que
$$\sum_{j=1}^{N} \gamma_j \left( G_j^\top Q \overline{\Lambda} G_j - e^{-\mu} Q \underline{\Lambda} \right) \leq 0 \,.$$

#### Proposition (Lamare, Girard, Prieur, SICON 2015)

Sous l'hypothèse 1, le système (26)–(28) avec la loi de commutation (32) est GES tant que la solution existe. Soit Vcomme proposée,  $\exists c > 0$  tel que l'inégalité suivante

$$|y(.,t)|_{L^{2}(0,1)} \leq c e^{-\mu\lambda t} |y^{0}|_{L^{2}(0,1)} , \qquad (34)$$

est satisfaite tant que la solution existe.

Inconvénients

- Risque d'une fréquence élevée de commutations.
- ► Risque d'accumulation de commutation à un point donné du temps ⇒ plus d'existence globale en temps.

où  $\eta > 0$  et  $\varepsilon(0) > 0$ .

## Solution : ajout d'un hystéresis

$$\sigma[w](t) = \begin{cases} \sigma[w](t^{-}), & \text{si } q_{\sigma[w](t^{-})}(w(t)) < \varepsilon(t) \\ \arg\min_{i \in \mathcal{I}} q_i(w(t)), & \text{si } q_{\sigma[w](t^{-})}(w(t)) = \varepsilon(t) \end{cases},$$
(35)

avec

$$\dot{\varepsilon}(t) = -\eta \varepsilon(t)$$
. (36)

La fonction  $\varepsilon$  est essentielle pour prouver l'existence de solutions. Il peut être prouvé qu'avec  $\varepsilon(t) \equiv 0$  l'existence d'une solution globale en temps n'est pas assurée en général.

### Solution : ajout d'un hystéresis

$$\sigma[w](t) = \begin{cases} \sigma[w](t^{-}), & \text{si } q_{\sigma[w](t^{-})}(w(t)) < \varepsilon(t) \\ \arg\min_{i \in \mathcal{I}} q_i(w(t)), & \text{si } q_{\sigma[w](t^{-})}(w(t)) = \varepsilon(t) \end{cases},$$
(35)

avec

$$\dot{\varepsilon}(t) = -\eta \varepsilon(t)$$
 (36)

où  $\eta > 0$  et  $\varepsilon(0) > 0$ . La fonction  $\varepsilon$  est essentielle pour prouver l'existence de solutions. Il peut être prouvé qu'avec  $\varepsilon(t) \equiv 0$  l'existence d'une solution globale en temps n'est pas assurée en général.

#### Théorème (Lamare, Girard, Prieur, SICON 2015)

Sous l'hypothèse 1, le système (26)–(28) avec la loi de commutation (35) est globalement exponentiellement convergent. Soit V comme proposée,  $\exists c > 0, \alpha > 0$  tels que la solution de (26)–(28) satisfait l'inégalité  $|y(.,t)|_{L^2(0,1)} \leq ce^{-\alpha t} \left( |y^0|_{L^2(0,1)} + \varepsilon(0) \right),$  (37)  $\forall t \geq 0.$ 

#### Hypothèse 2

Il existe  $\gamma \in \Gamma$ , une matrice diagonale définie positive Q et un paramètre  $\mu > 0$  tels que  $\sum_{j=1}^{N} \gamma_j \left( G_j^\top Q \overline{\Lambda} G_j - e^{-\mu} Q \underline{\Lambda} \right) < 0 \,.$ 

### Robustesse

Considérons la version modifiée de la loi de commutation précédente

 $\sigma[\mathbf{v}](t) = \begin{cases} \sigma[\mathbf{v}](t^{-}), & \text{si } q_{\sigma[\mathbf{v}](t^{-})}(\mathbf{v}(t)) \leq -\gamma \|\mathbf{v}\|^{2} + \varepsilon(t) \\ \arg\min_{i \in \mathcal{I}} q_{i}(\mathbf{v}(t)), & \text{si } q_{\sigma[\mathbf{v}](t^{-})}(\mathbf{v}(t)) \geq -\gamma \|\mathbf{v}\|^{2} + \varepsilon(t) \\ \operatorname{avec} \mathbf{v}(t) = w(t) + \delta(t) \text{ où } \delta \text{ est un bruit de mesure par rapport à} \\ w \text{ tel que} \end{cases}$ 

$$\|\boldsymbol{\delta}(t)\| \leq \rho \|\boldsymbol{w}(t)\|, \quad \forall t \geq 0.$$
(38)

Pour  $\rho$  suffisament petit et sous l'hypothèse 2, le système (26)–(28) reste exponentiellement convergent (Chapitre 2).

## Stabilité Entrée-État (ISS)

#### Définition

Le système (26)–(28) est *Entrée-État Stable* si  $\exists \alpha > 0$ , une fonction  $g : \mathbb{R}^+ \to \mathbb{R}^+$  et une fonction h de classe  $\mathcal{K}_{\infty}$ , tels que  $\forall y^0 \in C_{lpw}$  ([0,1];  $\mathbb{R}^n$ ) et  $\forall \delta \in C_{rpw}$  ( $\mathbb{R}^+$ ;  $\mathbb{R}$ ), la solution de (26)–(28) existe  $\forall t \in \mathbb{R}^+$  et  $|y(t, \cdot)|_{L^2(0,1)} \leq e^{-\alpha t}g\left(|y^0|_{L^2(0,1)}\right) + h(|\delta|_{L^{\infty}})$ . (39)

Sous l'hypothèse 2, le système (26)–(28) est Entrée-État Stable (Chapitre 2).

- $\land \Lambda(t) = \\ \begin{bmatrix} 0.5 + 0.05 \sin(10t) & 0 \\ 0 & 0.5 + 0.05 \cos(t) \end{bmatrix}$
- $\blacktriangleright \quad G_1 = \begin{bmatrix} 1.1 & 0.2 \\ -0.3 & 0.1 \end{bmatrix}$
- $\blacktriangleright \ G_2 = \begin{bmatrix} 0.2 & 0.2 \\ 0.1 & -1.05 \end{bmatrix}$
- $\rho = 7\%, \, \delta(t) = |w(t)| \, \rho \left[\cos(t), \sin(t)\right]^{\top}$
- $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1.0434 \end{bmatrix}$
- ► µ = 0.1

Données du système hyperbolique linéaire.

| $\Lambda(t) = \begin{bmatrix} 0 & f & f \\ 0 & f & f \\ 0 & f & f \end{bmatrix}$             |                                                                                                             |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} 0.5+0.05\sin(10t) & 0\\ 0 & 0.5+0.05\cos(t) \end{bmatrix}$                  | Hypothèse 2 satisfaite, en effet                                                                            |
| $G_1 = \left[\begin{smallmatrix} 1.1 & 0.2 \\ -0.3 & 0.1 \end{smallmatrix}\right]$           | $A = \sum_{i=1}^{2} \gamma_{i} \left( G_{i}^{\top} Q \overline{\Lambda} G_{i} - e^{-\mu} Q \Lambda \right)$ |
| $\textit{G}_2 = \left[\begin{smallmatrix} 0.2 & 0.2 \\ 0.1 & -1.05 \end{smallmatrix}\right]$ | $\sum_{i=1}^{n} r^{i} \left( r^{i} + \frac{1}{2} \right)$                                                   |
| $ ho=$ 7% , $\delta(t)=$                                                                     | $= \begin{bmatrix} -0.0375 & 0.0257 \end{bmatrix}$                                                          |
| $\left  w(t)  ight   ho \left[ \cos(t), \sin(t)  ight]^	op$                                  | 0.0257 -0.0223                                                                                              |
| $Q = \begin{bmatrix} 1 & 0\\ 0 & 1.0434 \end{bmatrix}$                                       | $\operatorname{spec}(A) = \{-0.0567; -0.0031\}$                                                             |
| $\mu=$ 0.1                                                                                   |                                                                                                             |

• 
$$\gamma_1 = 0.45$$
 et  $\gamma_2 = 0.55$   
•  $y^0(x) = \begin{bmatrix} \sqrt{2}\sin(3\pi x) \\ \sqrt{2}\sin(4\pi x) \end{bmatrix}$ 

$$\land \Lambda(t) = \\ \begin{bmatrix} 0.5 + 0.05 \sin(10t) & 0 \\ 0 & 0.5 + 0.05 \cos(t) \end{bmatrix}$$

- $\blacktriangleright \quad G_1 = \begin{bmatrix} 1.1 & 0.2 \\ -0.3 & 0.1 \end{bmatrix}$
- $\blacktriangleright \ G_2 = \begin{bmatrix} 0.2 & 0.2 \\ 0.1 & -1.05 \end{bmatrix}$
- $\rho = 7\%, \, \delta(t) = |w(t)| \, \rho \left[\cos(t), \sin(t)\right]^{\top}$
- $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1.0434 \end{bmatrix}$
- ► µ = 0.1

- ►  $\Lambda(t) = \begin{bmatrix} 0.5+0.05\sin(10t) & 0\\ 0 & 0.5+0.05\cos(t) \end{bmatrix}$
- $\blacktriangleright \quad G_1 = \begin{bmatrix} 1.1 & 0.2 \\ -0.3 & 0.1 \end{bmatrix}$
- $\blacktriangleright \ G_2 = \begin{bmatrix} 0.2 & 0.2 \\ 0.1 & -1.05 \end{bmatrix}$
- $\rho = 7\%, \, \delta(t) = |w(t)| \, \rho \left[\cos(t), \sin(t)\right]^{\top}$
- $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1.0434 \end{bmatrix}$
- ▶ µ = 0.1

► 
$$\gamma_1 = 0.45$$
 et  $\gamma_2 = 0.55$   
►  $y^0(x) = \begin{bmatrix} \sqrt{2}\sin(3\pi x) \\ \sqrt{2}\sin(4\pi x) \end{bmatrix}$ 

#### Système non-commuté instable avec $G_1$



- ►  $\Lambda(t) = \begin{bmatrix} 0.5+0.05\sin(10t) & 0\\ 0 & 0.5+0.05\cos(t) \end{bmatrix}$
- $\blacktriangleright \ G_1 = \left[\begin{smallmatrix} 1.1 & 0.2 \\ -0.3 & 0.1 \end{smallmatrix}\right]$
- $\blacktriangleright \ G_2 = \begin{bmatrix} 0.2 & 0.2 \\ 0.1 & -1.05 \end{bmatrix}$
- $\rho = 7\%, \, \delta(t) = |w(t)| \, \rho \left[\cos(t), \sin(t)\right]^{\top}$
- $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1.0434 \end{bmatrix}$
- ▶ µ = 0.1

• 
$$\gamma_1 = 0.45$$
 et  $\gamma_2 = 0.55$   
•  $y^0(x) = \begin{bmatrix} \sqrt{2}\sin(3\pi x) \\ \sqrt{2}\sin(4\pi x) \end{bmatrix}$ 

#### Système non-commuté instable avec $G_2$



- ►  $\Lambda(t) = \begin{bmatrix} 0.5+0.05\sin(10t) & 0\\ 0 & 0.5+0.05\cos(t) \end{bmatrix}$
- $\blacktriangleright \ G_1 = \left[\begin{smallmatrix} 1.1 & 0.2 \\ -0.3 & 0.1 \end{smallmatrix}\right]$
- $\blacktriangleright \ G_2 = \begin{bmatrix} 0.2 & 0.2 \\ 0.1 & -1.05 \end{bmatrix}$
- $\rho = 7\%, \, \delta(t) = |w(t)| \, \rho \left[\cos(t), \sin(t)\right]^{\top}$
- $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1.0434 \end{bmatrix}$
- ▶ µ = 0.1

► 
$$\gamma_1 = 0.45$$
 et  $\gamma_2 = 0.55$   
►  $y^0(x) = \begin{bmatrix} \sqrt{2} \sin(3\pi x) \\ \sqrt{2} \sin(4\pi x) \end{bmatrix}$ 

Stabilité robuste



## Commutation pour le contrôle d'un réseau de canaux



Le modèle satisfait les équations non-linéaires de Saint-Venant

$$\frac{\partial}{\partial t} \begin{pmatrix} H_j \\ V_j \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} H_j V_j \\ \frac{V_j^2}{2} + gH_j \end{pmatrix} = 0, \quad j = 1, \dots, \mathcal{M}.$$
(40)

## Commutation pour le contrôle d'un réseau de canaux



Le modèle satisfait les équations non-linéaires de Saint-Venant

$$\frac{\partial}{\partial t} \begin{pmatrix} H_j \\ V_j \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} H_j V_j \\ \frac{V_j^2}{2} + gH_j \end{pmatrix} = 0, \quad j = 1, \dots, \mathcal{M}.$$
(40)

## Réécriture du modèle

#### Linéarisation

- Changement de variable, passage en coordonnées de Riemann
- Choix de contrôleurs pour avoir

$$y(t,0)=G_iy(t,1).$$

$$\Rightarrow$$
  $G_i = G(k_i)$ ,  $k_i$  est un gain

[Bastin, Coron, d'Andréa-Novel; 09]

## Simulation

- ▶ Longueur : *L* = 1000m
- Largeur : l = 1m
- $g = 9.81 \text{ m.s}^{-2}$
- ▶ µ<sub>0</sub> = 0.4
- $H_{down} = 1m$
- $(H_1^{\star}, H_2^{\star}) = (2.5, 1) \text{ m}$
- $Q^{\star} = 1 \text{ m}^3.\text{s}^{-1}$



- $(H_1(0,x), H_2(0,x)) = (4,1.4) \text{ m}$
- $Q(0,x) = 2 \text{ m}^3.\text{s}^{-1}$
- $(k_1^1, k_2^1) = (1, 0.2)$
- $(k_1^2, k_2^2) = (0.2, 1)$



Figure: Évolution de la fonction Lyapunov pour différente stratégie de contrôle.

39

## Plan

- I. Calcul de fonctions Lyapunov par optimisation
- II. Systèmes hyperboliques à commutation
- III. Génération de trajectoire et poursuite
- IV. Conclusion et perspectives

## III Génération de trajectoire et poursuite (Chapitre 3)

Collaboration avec Nikolaos Bekiaris-Liberis, séjour Université de Californie à Berkeley (2014), groupe Pr. Alexandre Bayen.

Soit le système

$$\partial_t y_1(t,x) + \varepsilon_1(x) \partial_x y_1(t,x) = \gamma_1(x) y_2(t,x)$$
 (41)

$$\partial_t y_2(t,x) - \varepsilon_2(x) \partial_x y_2(t,x) = \gamma_2(x) y_1(t,x)$$
(42)

avec les conditions frontières

$$y_1(t,0) = qy_2(t,0)$$
 (43)

$$y_2(t,1) = U(t)$$
 (44)

$$z(t) = y_2(t,0)$$
. (45)

 $\label{eq:objectif} \mbox{Objectif}: \ z(t) \rightarrow z^r(t)$ 

## Solution : backstepping.

## Poursuite

L'erreur par rapport à la trajectoire de référence  $(y_1^r, y_2^r)^{ op}$ 

$$u(t,x) = y_1(t,x) - y_1^r(t,x)$$
  
$$v(t,x) = y_2(t,x) - y_2^r(t,x),$$

donne la dynamique

$$\partial_t u(t,x) + \varepsilon_1(x) \partial_x u(t,x) = \gamma_1(x) v(t,x)$$
 (46)

$$\partial_t v(t,x) - \varepsilon_2(x) \partial_x v(t,x) = \gamma_2(x) u(t,x)$$
 (47)

$$u(t,0) = qv(t,0)$$
 (48)

$$v(t,1) = \tilde{U}(t), \qquad (49)$$

où  $\tilde{U} = U - U^r$ .

On utilise le contrôleur

$$\tilde{U}(t) = -k_P v(t,0) - k_I \eta(t)$$
(50)

оù

$$\dot{\eta}(t) = v(t,0), \qquad (51)$$

et  $\eta(0) = \eta^0 \in \mathbb{R}$ .

**Objectif** : analyser la stabilité du système augmenté  $(u, v, \eta)^{\top}$ .

## Solution : Analyse Lyapunov.

La stabilité du système augmenté  $(u, v, \eta)$  ne peut pas être analysée avec une fonction Lyapunov « diagonale ».

 $\Rightarrow$  Ajouter un terme croisé dans V.

$$V(u, v, \eta) = \int_0^1 \begin{bmatrix} u(x) \\ v(x) \\ \eta \end{bmatrix}^\top \begin{bmatrix} \frac{e^{-\mu x}}{\varepsilon_1(x)} & 0 & 0 \\ 0 & \beta \frac{e^{\mu x}}{\varepsilon_2(x)} & \frac{\gamma e^{\nu x}}{2\varepsilon_2(x)} \\ 0 & \frac{\gamma e^{\nu x}}{2\varepsilon_2(x)} & \frac{\rho}{2} \end{bmatrix} \begin{bmatrix} u(x) \\ v(x) \\ \eta \end{bmatrix} dx$$

## Compensation de perturbations

Soit le système

$$\partial_t y_1(t,x) + \varepsilon_1(x) \partial_x y_1(t,x) = \gamma_1(x) y_2(t,x) + d_1(x)$$
 (52)

$$\partial_t y_2(t,x) - \varepsilon_2(x) \partial_x y_2(t,x) = \gamma_2(x) y_1(t,x) + d_2(x)$$
(53)

$$y_1(t,0) = qy_2(t,0) + d_3$$
 (54)

$$y_2(t,1) = U(t) + d_4.$$
 (55)

# L'action intégrale compense les erreurs en la sortie z(t).

Voir [Lamare, Bekiaris-Liberis; SCL 15, à paraitre]

## Illustration



Figure: Sortie v(t, 0) du système perturbé pour les équations Aw-Rascle-Zhang.

## Plan

- I. Calcul de fonctions Lyapunov par optimisation
- II. Systèmes hyperboliques à commutation
- III. Génération de trajectoire et poursuite
- IV. Conclusion et perspectives

## Conclusion

- Analyse de systèmes hyperboliques par méthode Lyapunov
- Méthode numérique pour leur analyse
- Extension du contrôle à des signaux de commutation
- Génération de trajectoire et poursuite

## Perspectives

 Généralisation des résultats en présence d'un terme source commuté

$$\partial_t y + \Lambda_i \partial_x y = F_i y \,.$$

► Généralisation à des systèmes hyperbolique quasilinéaires  $\partial_t y + \Lambda_i(y) \partial_x y = F_i y$ ,

avec

$$B(y(t,0),y(t,1))=0\,. \label{eq:basic}$$
 Stabilité en norme  $C^0,\ C^1\,?$ 

## Perspectives

 Généralisation des résultats en présence d'un terme source commuté

$$\partial_t y + \mathbf{\Lambda}_i \partial_x y = \mathbf{F}_i y \,.$$

Généralisation à des systèmes hyperbolique quasilinéaires

 $\partial_t y + \Lambda_i(y) \partial_x y = F_i y$ ,

avec

$$B(y(t,0), y(t,1)) = 0.$$

Stabilité en norme  $C^0$ ,  $C^1$ ?