PhD Defense

Topology and Algorithms on Combinatorial Maps

Vincent Despré

18 Octobre 2016

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.
PhD Defense

Vincent DESPRE

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection
Number of Curves
The Problem
The Results

Conclusion
PhD Defense
Vincent DESPRE

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection
Number of Curves
The Problem
The Results

Conclusion
Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection
Number of Curves
The Problem
The Results

Conclusion
\(V \) = number of vertices, \(E \) = number of edges and \(F \) = number of faces

Euler Formula

On a surface that can be deformed to a sphere, any polygonal subdivision verifies:

\[
\chi(S) = V - E + F = 2
\]
Euler Formula

On a surface S of genus g, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2 - 2g$$
Euler Formula

On a surface S of genus g with b boundaries, any polygonal subdivision verifies:

$$
\chi(S) = V - E + F = 2 - 2g - b
$$
Introduction
The Notion of Surface Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Introduction
The Notion of Surface Topology
Combinatorial Maps

Splitting Cycles
The Problem Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Splitting Cycles
Splitting Cycles

Deciding if a combinatorial map admits a splitting cycle is NP-complete.

Cabello et al. (2011)
Barnette’s Conjecture (1982)

Every triangulations of surfaces of genus at least 2 admit a splitting cycle.
Conjecture (Mohar and Thomassen, 2001)

Every triangulations of surfaces of genus $g \geq 2$ admit a splitting cycle of every different type.
Irreducible Triangulations

There are a finite number of irreducible triangulations of genus g. (Barnette and Edelson, 1988 and Joret and Wood, 2010)

- There are 396784 irreducible triangulations of genus 2.
- Unreachable for genus 3.
Genus 2 irreducible triangulations

First implementation by Thom Sulanke.

Genus 2:
Number of triangulations: 396 784

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>51</td>
<td>681</td>
<td>130</td>
<td>1</td>
<td></td>
<td>6.09</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>58</td>
<td>2249</td>
<td>16138</td>
<td>7818</td>
<td>11</td>
<td>6.21</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>1516</td>
<td>20507</td>
<td>72001</td>
<td>22877</td>
<td>121</td>
<td>6.00</td>
</tr>
<tr>
<td>13</td>
<td>710</td>
<td>13004</td>
<td>50814</td>
<td>78059</td>
<td>16609</td>
<td>9</td>
<td>5.61</td>
</tr>
<tr>
<td>14</td>
<td>8130</td>
<td>30555</td>
<td>12308</td>
<td>3328</td>
<td>205</td>
<td>1</td>
<td>4.21</td>
</tr>
<tr>
<td>15</td>
<td>36794</td>
<td>1395</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3.04</td>
</tr>
<tr>
<td>16</td>
<td>661</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.01</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
</tr>
</tbody>
</table>
Genus 6

We consider the 59 non-isomorphic embeddings of K_{12}. (Altshuler, Bokowski and Schuchert 1996)

Average: 7.58
Worst-case: 8

Average: 9.41
Worst-case: 10

Average: 10.32
Worst-case: 12 (Hamiltonian cycle!)
Complete Graphs

\[\chi(S) = v - e + f = n - \frac{n(n - 1)}{2} + \frac{2}{3} \cdot \frac{n(n - 1)}{2} = 2 - 2g \]

\[g = \frac{(n - 3)(n - 4)}{12} \]

\[(n - 3)(n - 4) \equiv 0[12] \iff n \equiv 0, 3, 4 \text{ or } 7[12] \]

Theorem (Ringel and Youngs, \sim 1970)

\(K_n \) can triangulate a surface if and only if \(n \equiv 0, 3, 4 \text{ or } 7[12] \).
Computation time

New implementation in C++. The data-structure used for the triangulations is the flag representation.

<table>
<thead>
<tr>
<th>n</th>
<th>12</th>
<th>15</th>
<th>16</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>2 s.</td>
<td>1 h.</td>
<td>12 h.</td>
<td>~10 years</td>
</tr>
</tbody>
</table>

This has been computed with an 8 cores computer with 16 Go of RAM. It uses parallel computation.
Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
PhD Defense
Vincent DESPRE

Introduction
The Notion of Surface Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion

<table>
<thead>
<tr>
<th>n</th>
<th>15</th>
<th>16</th>
<th>19</th>
<th>⋮</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>1 h.</td>
<td>12 h.</td>
<td>~10 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>2 s.</td>
<td>3 s.</td>
<td>8 sec.</td>
<td></td>
<td>1 h.</td>
</tr>
</tbody>
</table>
Introduction

The Notion of Surface Topology

Combinatorial Maps

Splitting Cycles

The Problem

Experimental Approach

The Key Point

The Results

Encoding Toroidal Triangulations

Planar Case

Torus Case

Geometric Intersection Number of Curves

The Problem

The Results

Conclusion

\[\downarrow = \text{No cycle found.}\]

Counter-Examples

Mohar and Thomassen conjecture is false.
<table>
<thead>
<tr>
<th>Type</th>
<th>K_n</th>
<th>K_{15}</th>
<th>K_{16}</th>
<th>K_{19}</th>
<th>K_{27}</th>
<th>K_{28}</th>
<th>K_{31}</th>
<th>K_{39}</th>
<th>K_{40}</th>
<th>K_{43}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>⊥</td>
<td>17</td>
<td>24</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>14</td>
<td>16</td>
<td>⊥</td>
<td>27</td>
<td>⊥</td>
<td>20</td>
<td>26</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>16</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>21</td>
<td>30</td>
<td>26</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>23</td>
<td>32</td>
<td>28</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>24</td>
<td>⊥</td>
<td>30</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>28</td>
<td>⊥</td>
<td>33</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>28</td>
<td>⊥</td>
<td>35</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>29</td>
<td>⊥</td>
<td>36</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>38</td>
<td>⊥</td>
<td>38</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>40</td>
<td>⊥</td>
<td>40</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max type</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>23</td>
<td>25</td>
<td>31</td>
<td>52</td>
<td>55</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

⊥ = No cycle found.

Conjecture

For every $\alpha > 0$, there exists a triangulation with no splitting cycles of type larger than $\alpha \cdot \frac{g}{2}$.
Encoding Toroidal Triangulations

Properties of the planar case:

1/ We have a notion of 3-orientation for triangulations.
2/ Every 3-orientation admits a unique Schnyder wood coloration.
3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.
4/ The 3-orientations of a given triangulation have a structure of distributive lattice.
5/ The minimal element of the lattice has no clockwise oriented cycle.
6/ Triangulations are in bijection with a particular type of decorated embedded trees.
1/ We have a notion of 3-orientation for triangulations.

Kampen (1976)

Every planar triangulation admits a 3-orientation.
2/ Every 3-orientation admits a unique Schnyder wood coloration.
2/ Every 3-orientation admits a unique Schnyder wood coloration.

de Fraisseix and Ossona de Mendez (2001)

Each 3-orientation of a plane simple triangulation admits a unique coloring (up to permutation of the colors) leading to a Schnyder wood.
3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.
4/ The 3-orientations of a given triangulation have a structure of distributive lattice.
4/ The 3-orientations of a given triangulation have a structure of distributive lattice.

The set of the 3-orientations of a given triangulation has a structure of distributive lattice for the appropriate ordering.
Properties of the planar case:

1/ We have a notion of 3-orientation for triangulations.

2/ Every 3-orientation admits a unique Schnyder wood coloration.

3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.

4/ The 3-orientations of a given triangulation have a structure of distributive lattice.

5/ The minimal element of the lattice has no clockwise oriented cycle.

6/ Triangulations are in bijection with a particular type of decorated embedded trees.
6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).
6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).
6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).
Properties of the torus case:

1/ We have a notion of 3-orientation for triangulations.
2/ Every 3-orientation admits a unique Schnyder wood coloration.
3/ Each color corresponds to a spanning tree and so There is no monochromatic contractible cycle.
4/ The 3-orientations of a given triangulation have a structure of distributive lattices.
5/ The minimal element of each lattice has no clockwise oriented contractible cycle.
6/ Triangulations are in bijection with a particular type of decorated unicellular toroidal maps.
6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps.**

Tree-cotree Decomposition: \((T, C, X)\). \(T\) has \(n - 1\) edges, \(C\) has \(f - 1\) edges and \(X\) the remaining.

\[
\chi = n - (n - 1 + f - 1 + x) + f \iff x = 2 - \chi = 2g
\]
6. Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.
Geometric Intersection Number of Curves

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Geometric Intersection Number of Curves

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Geometric Intersection Number of Curves

PhD Defense

Vincent DESPRE

Introduction
- The Notion of Surface
- Topology
- Combinatorial Maps

Splitting Cycles
- The Problem
- Experimental Approach
- The Key Point
- The Results

Encoding Toroidal Triangulations
- Planar Case
- Torus Case

Geometric Intersection Number of Curves
- The Problem
- The Results

Conclusion
PhD Defense
Vincent DESPRE

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Geometric Intersection Number of Curves

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Geometric Intersection Number of Curves

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Conclusion
Introduction

The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles

The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations

Planar Case
Torus Case

Geometric Intersection Number of Curves

The Problem
The Results

Conclusion
Geometric Intersection Number of Curves

Introduction
The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Conclusion
Geometric Intersection Number of Curves

Introduction

The Notion of Surface
Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion
Three problems:

- Deciding if a curve can be made simple by homotopy.
- Finding the minimum possible number of self-intersections.
- Finding a corresponding minimal representative.

(j) Number of crossings: too many!

(k) Number of crossings: 1 → optimal
Introduction
The Notion of Surface Topology
Combinatorial Maps

Splitting Cycles
The Problem
Experimental Approach
The Key Point
The Results

Encoding Toroidal Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves
The Problem
The Results

Conclusion

<table>
<thead>
<tr>
<th>Boundaries</th>
<th>Simple</th>
<th>Number</th>
<th>Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b > 0$</td>
<td>$O((g\ell)^2)$</td>
<td>$O((g\ell)^2)$</td>
<td>$O((g\ell)^4)$</td>
</tr>
<tr>
<td>$b = 0$</td>
<td>$O(\ell^5)$</td>
<td>$O(\ell^5)$</td>
<td>$dGS (1997)$</td>
</tr>
<tr>
<td>Any</td>
<td>$O(\ell \cdot \log^2(\ell))$</td>
<td>$O(\ell^2)$</td>
<td>$O(\ell^4)$</td>
</tr>
</tbody>
</table>

BS: Birman and Series, An algorithm for simple curves on surfaces.
CL: Cohen and Lustig, Paths of geodesics and geometric intersection numbers: I.
L: Lustig, Paths of geodesics and geometric intersection numbers: II.
A: Arettines, A combinatorial algorithm for visualizing representatives with minimal self-intersection.
dGS: de Graaf and Schrijver, Making curves minimally crossing by Reidemeister moves.
GKZ: Gonçalves, Kudryavtseva and Zieschang, An algorithm for minimal number of (self-)intersection points of curves on surfaces.
Publications:

1/ Some Triangulated Surfaces without Balanced Splitting: Published in *Graphs and Combinatorics*.

2/ Encoding Toroidal Triangulations: Accepted in *Discrete & Computationnal Geometry*.

3/ Computing the Geometric Intersection Number of Curves: Will be submitted to the next SoCG.

Work in progress:

1/ Looking for a proof that does not require a computer.

2/ There are a lot of implications for the bijection in the plane. Is it possible to generalized them.

3/ It remains to look at the construction of a minimal representative for a couple of curves.
Conjecture

Deciding if there is a simple closed walk in a given homotopy class is NP-complete and FPT parametrized by the genus of the surface.
Do you have questions?