

Topology and Algorithms on Combinatorial Maps

Vincent Despré

18 Octobre 2016

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the

French program Investissement d'avenir.

Vincent DESPRE

Introduction

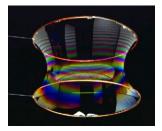
The Notion of Surface Topology

Splitting Cycles

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results



Vincent DESPRE

Introduction

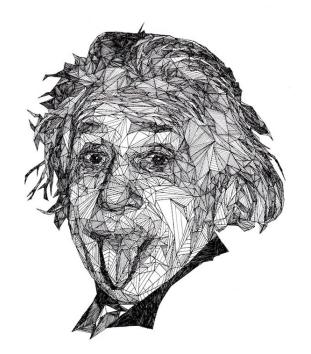
The Notion of Surface Topology

Splitting Cycles

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results



Vincent DESPRE

Introduction The Notion of Surface

Topology Combinatorial Maps

Splitting Cycles

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Vincent DESPRE

Introduction The Notion of Surface

Topology Combinatorial Maps

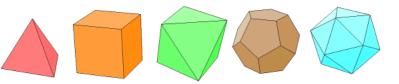
Splitting

The Problem Experimental Approach The Key Point

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion



V=number of vertices, E=number of edges and F=number of faces

Euler Formula

On a surface that can be deformed to a sphere, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2$$

Vincent DESPRE

Introduction The Notion of Surface

Topology Combinatorial Maps

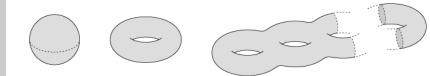
Splitting

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion



Euler Formula

On a surface S of genus g, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2 - 2g$$

Vincent DESPRE

Introduction The Notion of Surface

Topology Combinatorial Maps

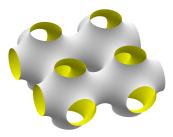
Splitting Cycles

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion



Euler Formula

On a surface S of genus g with b boundaries, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2 - 2g - b$$

Vincent DESPRE

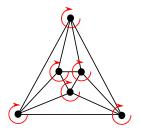
Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles The Problem Experimental Approach

The Results

Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results



Vincent DESPRE

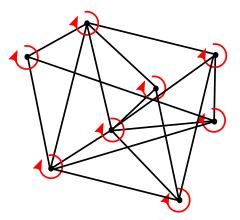
Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

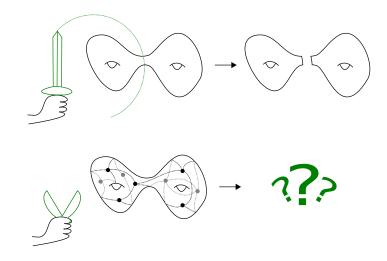


Vincent DESPRE

- Introduction The Notion of Surface Topology Combinatorial Maps
- Splitting Cvcles
- The Problem
- Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Splitting Cycles

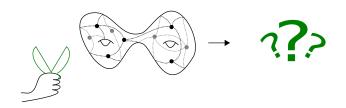


Vincent DESPRE

- Introduction The Notion of Surface Topology Combinatorial Maps
- Splitting Cvcles
- The Problem
- Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Splitting Cycles



Cabello et al. (2011)

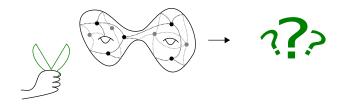
Deciding if a combiantorial map admits a splitting cycle is NP-complete.

Vincent DESPRE

- Introduction The Notion of Surface Topology Combinatorial Maps
- Splitting Cycles
- The Problem
- Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Splitting Cycles

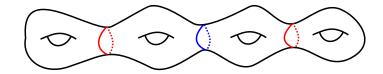


Barnette's Conjecture (1982)

Every triangulations of surfaces of genus at least 2 admit a splitting cycle.

Vincent DESPRE

- Introduction The Notion of Surface Topology Combinatorial Maps
- Splitting
- The Problem
- Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results
- Conclusion



Conjecture (Mohar and Thomassen, 2001)

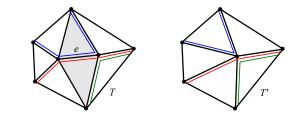
Every triangulations of surfaces of genus $g \ge 2$ admit a splitting cycle of every different type.

Vincent DESPRE

- Introduction The Notion of Surface Topology Combinatorial Maps
- Splitting Cycles
- The Problem
- Approach
- The Results
- Encoding Toroidal Triangulations Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Irreducible Triangulations



- → There are a finite number of irreducible triangulations of genus *g*. (Barnette and Edelson, 1988 and Joret and Wood, 2010)
- → There are 396784 irreducible triangulations of genus 2.
- → Unreachable for genus 3.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles The Problem Experimental

Approach

The Key Point The Results Encoding Toroidal Triangulations Planar Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Genus 2 irreducible triangulations

First implementation by Thom Sulanke.

Genus 2:

Number of triangulations: 396 784

n	3	4	5	6	7	8	Average
10		2	51	681	130	1	6.09
11	2	58	2249	16138	7818	11	6.21
12	25	1516	20507	72001	22877	121	6.00
13	710	13004	50814	78059	16609	9	5.61
14	8130	30555	12308	3328	205	1	4.21
15	36794	1395	3	1	2		3.04
16	661	3					3.01
17	5						3.00

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

Experimental Approach The Key Point The Besults

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Genus 6

We consider the 59 non-isomorphic embeddings of K_{12} . (Altshuler, Bokowski and Schuchert 1996)

Average: 7.58 Worst-case: 8

Average: 9.41 Worst-case: 10

Average: 10.32 Worst-case: 12 (Hamiltonian cycle!)

Vincent DESPRE

Introduction

The Notion of Surface Topology

Splitting

Cycles

The Problem Experimental

Approach The Key Point

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Complete Graphs

 χ

$$\begin{split} (S) &= v - e + f = n - \frac{n(n-1)}{2} + \frac{2}{3} \cdot \frac{n(n-1)}{2} = 2 - 2g \\ g &= \frac{(n-3)(n-4)}{12} \\ (n-3)(n-4) &\equiv 0[12] \Leftrightarrow n \equiv 0, 3, 4 \text{ or } 7[12] \end{split}$$

Theorem (Ringel and Youngs, ~1970)

 K_n can triangulate a surface if and only if $n \equiv 0, 3, 4$ or 7[12].

Vincent DESPRE

Introduction The Notion of Surface Topology

Splitting

Cycles The Problem Experimental

The Key Point

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Computation time

New implementation in C++. The data-structure used for the triangulations is the flag representation.

n	12	15	16	19
basic	2 s.	1 h.	12 h.	\sim 10 years

This has been computed with an 8 cores computer with 16 Go of RAM. It uses parallel computation.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

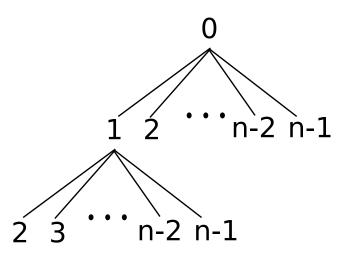
Splitting Cycles

> The Problem Experimental Approach

The Key Point

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results



Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

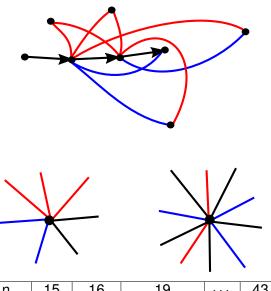
Splitting Cycles

> The Problem Experimental Approach

The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results



	n	15	16	19	• • •	43
ĺ	basic	1 h.	12 h.	\sim 10 years		
ĺ	final	2 s.	3 s.	8 sec.		1 h.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

- The Problem Experimental Approach The Key Point
- The Results
- Encoding Toroidal Triangulations ^{Planar Case} Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Type K _n	K_{15}	K_{16}	K_{19}	K_{27}	K_{28}	K_{31}	K_{39}	K40	K_{43}
1	8	10	11	12	12	8	12	10	8
2	11	12	14	16	17	13	15	15	11
3	12	14	16	19	18	15	20	18	12
4	13	16	18	20	T	17	24	19	15
5	14	16	1	27	1	20	26	24	18
6		16	1	1	T	21	30	26	20
7			1	1	1	23	32	28	21
8			1	1	1	24	T	30	23
9			1	1	T	28	1	33	24
10			1	1	T	28	1	35	25
11				1	1	29	T	36	27
12				1	T	1	1	38	29
13				1	T	1	1	40	30
14				\perp	\perp	\perp	\perp	\perp	31
:				T	T	T	Ť	T	:
29						1	1	1	42
30						1	1	1	1
max type	5	6	10	23	25	31	52	55	65

\perp = No cycle found.

Counter-Examples

Mohar and Thomassen conjecture is false.

Vincent DESPRE

- Introduction The Notion of Surface Topology Combinatorial Maps
- Splitting Cycles
- Experimental Approach The Key Point
- The Results
- Encoding Toroidal Triangulations Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Type K _n	K ₁₅	K_{16}	K_{19}	K_{27}	K ₂₈	K_{31}	K_{39}	K40	K_{43}
1	8	10	11	12	12	8	12	10	8
2	11	12	14	16	17	13	15	15	11
3	12	14	16	19	18	15	20	18	12
4	13	16	18	20	1	17	24	19	15
5	14	16	\perp	27	\perp	20	26	24	18
6		16	\perp	\perp	\perp	21	30	26	20
7			\perp	1	1	23	32	28	21
8			\perp	\perp	\perp	24	\perp	30	23
9			\perp	\perp	\perp	28	\perp	33	24
10			1	1	1	28	1	35	25
11					1	29	1	36	27
12				\perp	\perp	\perp	\perp	38	29
13				1	1	1	1	40	30
14				\perp	1	\perp	\perp	1	31
:				1	1	1	1		:
29						1	T	1	42
30						1	1	1	1
max type	5	6	10	23	25	31	52	55	65

\perp = No cycle found.

Conjecture

For every $\alpha > 0$, there exists a triangulation with no splitting cycles of type larger than $\alpha \cdot \frac{g}{2}$.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Map

Splitting

- The Problem Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations
- Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Encoding Toroidal Triangulations

Properties of the planar case:

- 1/ We have a notion of 3-orientation for triangulations.
- 2/ Every 3-orientation admits a unique Schnyder wood coloration.
- 3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.
- 4/ The 3-orientations of a given triangulation have a structure of distributive lattice.
- 5/ The minimal element of the lattice has no clockwise oriented cycle.
- 6/ Triangulations are in bijection with a particular type of decorated embedded trees.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

The Problem Experimental Approach The Key Point The Results

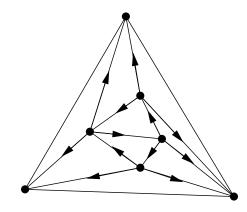
Encoding Toroidal Triangulations Planar Case

Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

1/ We have a notion of 3-orientation for triangulations.



Kampen (1976)

Every planar triangulation admits a 3-orientation.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

The Problem Experimental Approach The Key Point

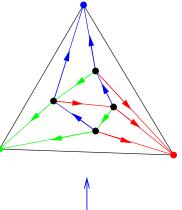
Encoding Toroidal Triangulations

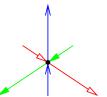
Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

2/ Every 3-orientation admits a unique Schnyder wood coloration.





Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

The Problem Experimental Approach The Key Point The Results

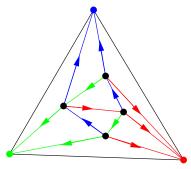
Encoding Toroidal Triangulations

Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

2/ Every 3-orientation admits a unique Schnyder wood coloration.



de Fraisseix and Ossona de Mendez (2001)

Each 3-orientation of a plane simple triangulation admits a unique coloring (up to permutation of the colors) leading to a Schnyder wood.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

The Problem Experimental Approach The Key Point The Results

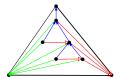
Encoding Toroidal Triangulations

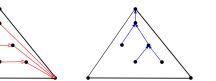
Planar Case Torus Case

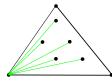
Geometric Intersection Number of Curves The Problem The Results

Conclusion

3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.







Vincent DESPRE

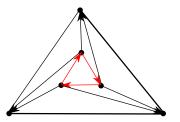
Introduction The Notion of Surface Topology Combinatorial Map

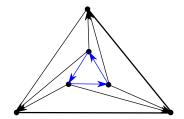
Splitting

- The Problem Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations
- Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

4/ The 3-orientations of a given triangulation have a structure of distributive lattice.





Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

The Problem Experimental Approach The Key Point The Results

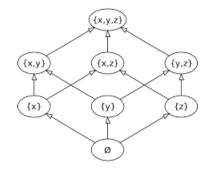
Encoding Toroidal Triangulations

Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

4/ The 3-orientations of a given triangulation have a structure of distributive lattice.



Propp (1993), Ossona de Mendez (1994), Felsner (2004)

The set of the 3-orientations of a given triangulation has a structure of distributive lattice for the appropriate ordering.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Map

Splitting

- The Problem Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations Planar Case
- Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

Properties of the planar case:

- 1/ We have a notion of 3-orientation for triangulations.
- 2/ Every 3-orientation admits a unique Schnyder wood coloration.
- 3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.
- 4/ The 3-orientations of a given triangulation have a structure of distributive lattice.
- 5/ The minimal element of the lattice has no clockwise oriented cycle.
- 6/ Triangulations are in bijection with a particular type of decorated embedded trees.

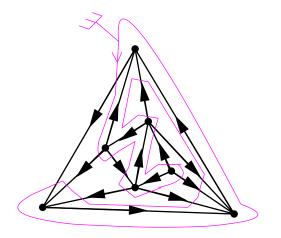
Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

- The Problem Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations
- Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).



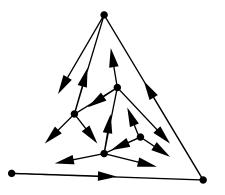
Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

- The Problem Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations
- Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).



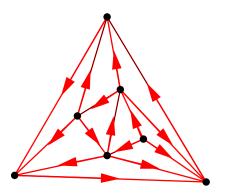
Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

- The Problem Experimental Approach The Key Point The Results
- Encoding Toroidal Triangulations
- Planar Case Torus Case
- Geometric Intersection Number of Curves The Problem The Results

Conclusion

6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).



Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Map

Splitting

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Properties of the torus case:

- 1/ We have a notion of 3-orientation for triangulations.
- 2/ Every 3-orientation admits a unique Schnyder wood coloration.
- 3/ Each color corresponds to a spanning tree and so There is no monochromatic **contractible** cycle.
- 4/ The 3-orientations of a given triangulation have a structure of distributive lattice**s**.
- 5/ The minimal element of each lattice has no clockwise oriented contractible cycle.
- 6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.

Vincent DESPRE

Introduction The Notion of Surface Topology

Splitting

The Problem Experimental Approach The Key Point The Results

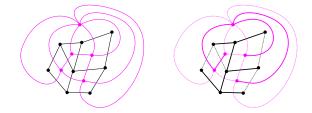
Encoding Toroidal Triangulations Planar Case

Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.



Tree-cotree Decomposition: (T, C, X). T has n - 1 edges, C has f - 1 edges and X the remaining. $\chi = n - (n - 1 + f - 1 + x) + f \Leftrightarrow x = 2 - \chi = 2g$

Vincent DESPRE

Introduction The Notion of Surface Topology

Splitting

The Problem Experimental Approach The Key Point The Results

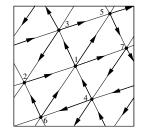
Encoding Toroidal Triangulations Planar Case

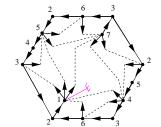
Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.





Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

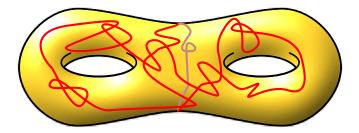
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

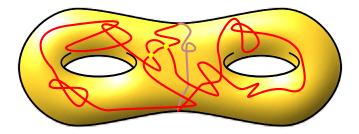
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

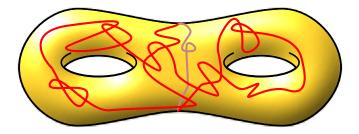
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

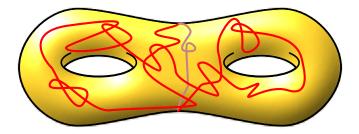
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

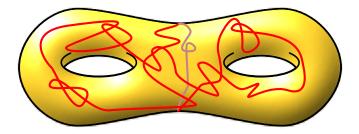
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

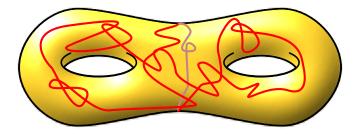
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

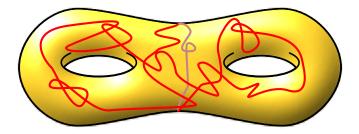
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

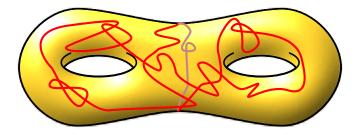
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

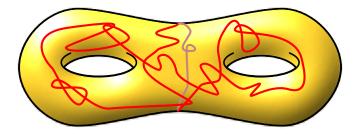
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

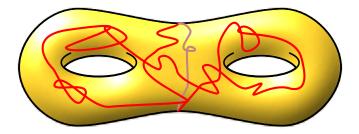
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

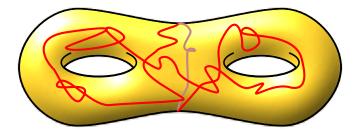
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

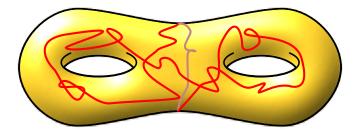
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

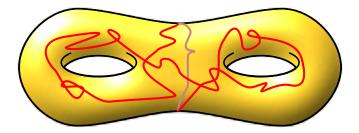
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

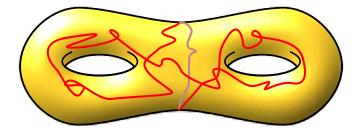
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

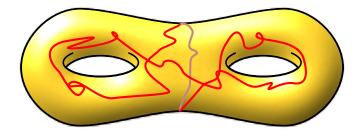
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

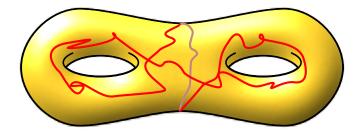
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

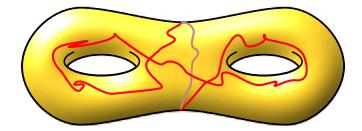
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

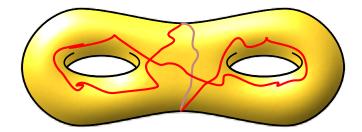
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

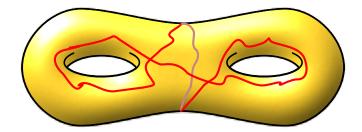
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

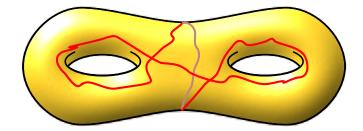
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

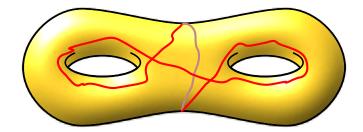
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

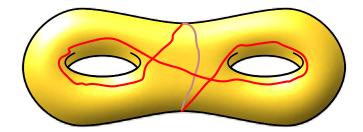
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

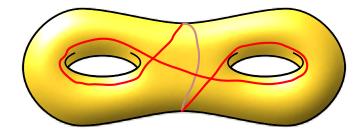
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

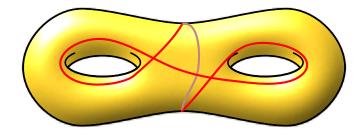
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Introduction The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

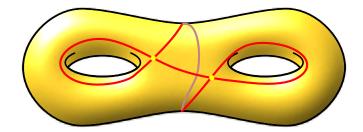
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion



Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

Splitting

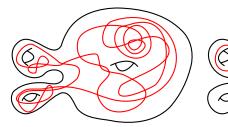
The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves

The Results

Conclusion



(j) Number of crossings: too many!

(k) Number of crossings: 1 \rightarrow optimal

Three problems:

- → Deciding if a curve can be made simple by homotopy.
- ➡ Finding the minimum possible number of self-intersections.
- → Finding a corresponding minimal representative.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Mag

Splitting

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Boundaries	Simple	Number	Representative
b > 0	$O((g\ell)^2)$	$O((g\ell)^2)$	$O((g\ell)^4)$
	BS (1984)	CL (1987)	A (2015)
b = 0	?	?	?
	L (1987)	L (1987)	dGS (1997)
	$O(\ell^5)$	$O(\ell^5)$	
	GKZ (2005)	GKZ (2005)	
Any	$O(\ell \cdot \log^2(\ell))$	$O(\ell^2)$	$O(\ell^4)$

BS: Birman and Series, An algorithm for simple curves on surfaces.

CL: Cohen and Lustig, Paths of geodesics and geometric intersection numbers: I.

L: Lustig, Paths of geodesics and geometric intersection numbers: II.

A: Arettines, A combinatorial algorithm for visualizing representatives with minimal self-intersection.

dGS: de Graaf and Schrijver, Making curves minimally crossing by Reidemeister moves.

GKZ: Gonçalves, Kudryavtseva and Zieschang, An algorithm for minimal number of (self-)intersection points of curves on surfaces.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Mar

Splitting

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion

Publications:

- 1/ Some Triangulated Surfaces without Balanced Splitting: Published in *Graphs and Combinatorics*.
- 2/ Encoding Toroidal Triangulations: Accepted in *Discrete* & *Computationnal Geometry*.
- 3/ Computing the Geometric Intersection Number of Curves: Will be submitted to the next SoCG.

Work in progress:

- 1/ Looking for a proof that does not require a computer.
- 2/ There are a lot of implications for the bijection in the plane. Is it possible to generalized them.
- 3/ It remains to look at the construction of a minimal representative for a couple of curves.

Vincent DESPRE

Introduction The Notion of Surface Topology Combinatorial Maps

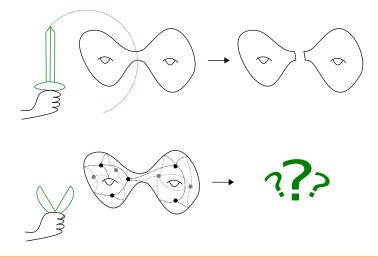
Splitting

The Problem Experimental Approach The Key Point The Results

Encoding Toroidal Triangulations Planar Case Torus Case

Geometric Intersection Number of Curves The Problem The Results

Conclusion



Conjecture

Deciding if there is a simple closed walk in a given homotopy class is NP-complete and FPT parametrized by the genus of the surface.

Do you have questions?