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V =number of vertices, E=number of edges and F=number
of faces

Euler Formula
On a surface that can be deformed to a sphere, any
polygonal subdivision verifies:

χ(S) = V − E + F = 2
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Euler Formula
On a surface S of genus g, any polygonal subdivision
verifies:

χ(S) = V − E + F = 2− 2g
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Euler Formula
On a surface S of genus g with b boundaries, any polygonal
subdivision verifies:

χ(S) = V − E + F = 2− 2g − b
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Splitting Cycles

10 / 27



PhD Defense

Vincent
DESPRE

Introduction
The Notion of
Surface

Topology

Combinatorial Maps

Splitting
Cycles
The Problem

Experimental
Approach

The Key Point

The Results

Encoding
Toroidal
Triangulations
Planar Case

Torus Case

Geometric
Intersection
Number of
Curves
The Problem

The Results

Conclusion

Splitting Cycles

Cabello et al. (2011)

Deciding if a combiantorial map admits a splitting cycle is
NP-complete.
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Splitting Cycles

Barnette’s Conjecture (1982)

Every triangulations of surfaces of genus at least 2 admit a
splitting cycle.
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Conjecture (Mohar and Thomassen, 2001)

Every triangulations of surfaces of genus g ≥ 2 admit a
splitting cycle of every different type.
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Irreducible Triangulations

e

T T'

ú There are a finite number of irreducible triangulations of
genus g. (Barnette and Edelson, 1988 and Joret and
Wood, 2010)

ú There are 396784 irreducible triangulations of genus 2.
ú Unreachable for genus 3.
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Genus 2 irreducible triangulations

First implementation by Thom Sulanke.
Genus 2:
Number of triangulations: 396 784

n
l 3 4 5 6 7 8 Average

10 2 51 681 130 1 6.09
11 2 58 2249 16138 7818 11 6.21
12 25 1516 20507 72001 22877 121 6.00
13 710 13004 50814 78059 16609 9 5.61
14 8130 30555 12308 3328 205 1 4.21
15 36794 1395 3 1 2 3.04
16 661 3 3.01
17 5 3.00

13 / 27
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Genus 6

We consider the 59 non-isomorphic embeddings of K12.
(Altshuler, Bokowski and Schuchert 1996)

Average: 7.58
Worst-case: 8

Average: 9.41
Worst-case: 10

Average: 10.32
Worst-case: 12 (Hamiltonian cycle!)

14 / 27



PhD Defense

Vincent
DESPRE

Introduction
The Notion of
Surface

Topology

Combinatorial Maps

Splitting
Cycles
The Problem

Experimental
Approach

The Key Point

The Results

Encoding
Toroidal
Triangulations
Planar Case

Torus Case

Geometric
Intersection
Number of
Curves
The Problem

The Results

Conclusion

Complete Graphs

χ(S) = v − e+ f = n− n(n− 1)

2
+

2

3
· n(n− 1)

2
= 2− 2g

g =
(n− 3)(n− 4)

12

(n− 3)(n− 4) ≡ 0[12]⇔ n ≡ 0, 3, 4 or 7[12]

Theorem (Ringel and Youngs, ∼1970)

Kn can triangulate a surface if and only if n ≡ 0, 3, 4 or 7[12].
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Computation time

New implementation in C++. The data-structure used for the
triangulations is the flag representation.

n 12 15 16 19
basic 2 s. 1 h. 12 h. ∼10 years

This has been computed with an 8 cores computer with 16
Go of RAM. It uses parallel computation.
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n 15 16 19 · · · 43

basic 1 h. 12 h. ∼10 years
final 2 s. 3 s. 8 sec. 1 h.
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Type
Kn K15 K16 K19 K27 K28 K31 K39 K40 K43

1 8 10 11 12 12 8 12 10 8
2 11 12 14 16 17 13 15 15 11
3 12 14 16 19 18 15 20 18 12
4 13 16 18 20 ⊥ 17 24 19 15
5 14 16 ⊥ 27 ⊥ 20 26 24 18
6 16 ⊥ ⊥ ⊥ 21 30 26 20
7 ⊥ ⊥ ⊥ 23 32 28 21
8 ⊥ ⊥ ⊥ 24 ⊥ 30 23
9 ⊥ ⊥ ⊥ 28 ⊥ 33 24

10 ⊥ ⊥ ⊥ 28 ⊥ 35 25
11 ⊥ ⊥ 29 ⊥ 36 27
12 ⊥ ⊥ ⊥ ⊥ 38 29
13 ⊥ ⊥ ⊥ ⊥ 40 30
14 ⊥ ⊥ ⊥ ⊥ ⊥ 31

.

.

. ⊥ ⊥ ⊥ ⊥ ⊥
.
.
.

29 ⊥ ⊥ ⊥ 42
30 ⊥ ⊥ ⊥ ⊥

max type 5 6 10 23 25 31 52 55 65

⊥ = No cycle found.

Counter-Examples

Mohar and Thomassen conjecture is false.
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Type
Kn K15 K16 K19 K27 K28 K31 K39 K40 K43

1 8 10 11 12 12 8 12 10 8
2 11 12 14 16 17 13 15 15 11
3 12 14 16 19 18 15 20 18 12
4 13 16 18 20 ⊥ 17 24 19 15
5 14 16 ⊥ 27 ⊥ 20 26 24 18
6 16 ⊥ ⊥ ⊥ 21 30 26 20
7 ⊥ ⊥ ⊥ 23 32 28 21
8 ⊥ ⊥ ⊥ 24 ⊥ 30 23
9 ⊥ ⊥ ⊥ 28 ⊥ 33 24

10 ⊥ ⊥ ⊥ 28 ⊥ 35 25
11 ⊥ ⊥ 29 ⊥ 36 27
12 ⊥ ⊥ ⊥ ⊥ 38 29
13 ⊥ ⊥ ⊥ ⊥ 40 30
14 ⊥ ⊥ ⊥ ⊥ ⊥ 31

.

.

. ⊥ ⊥ ⊥ ⊥ ⊥
.
.
.

29 ⊥ ⊥ ⊥ 42
30 ⊥ ⊥ ⊥ ⊥

max type 5 6 10 23 25 31 52 55 65

⊥ = No cycle found.

Conjecture

For every α > 0, there exists a triangulation with no splitting
cycles of type larger than α · g2 .
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Encoding Toroidal Triangulations

Properties of the planar case:
1/ We have a notion of 3-orientation for triangulations.
2/ Every 3-orientation admits a unique Schnyder wood

coloration.
3/ Each color corresponds to a spanning tree and so there

is no monochromatic cycle.
4/ The 3-orientations of a given triangulation have a

structure of distributive lattice.
5/ The minimal element of the lattice has no clockwise

oriented cycle.
6/ Triangulations are in bijection with a particular type of

decorated embedded trees.

20 / 27
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1/ We have a notion of 3-orientation for triangulations.

Kampen (1976)

Every planar triangulation admits a 3-orientation.

20 / 27



PhD Defense

Vincent
DESPRE

Introduction
The Notion of
Surface

Topology

Combinatorial Maps

Splitting
Cycles
The Problem

Experimental
Approach

The Key Point

The Results

Encoding
Toroidal
Triangulations
Planar Case

Torus Case

Geometric
Intersection
Number of
Curves
The Problem

The Results

Conclusion

2/ Every 3-orientation admits a unique Schnyder wood
coloration.
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2/ Every 3-orientation admits a unique Schnyder wood
coloration.

de Fraisseix and Ossona de Mendez (2001)

Each 3-orientation of a plane simple triangulation admits a
unique coloring (up to permutation of the colors) leading to
a Schnyder wood.
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3/ Each color corresponds to a spanning tree and so there
is no monochromatic cycle.
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4/ The 3-orientations of a given triangulation have a
structure of distributive lattice.
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4/ The 3-orientations of a given triangulation have a
structure of distributive lattice.

Propp (1993), Ossona de Mendez (1994), Felsner
(2004)

The set of the 3-orientations of a given triangulation has a
structure of distributive lattice for the appropriate ordering.
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Properties of the planar case:
1/ We have a notion of 3-orientation for triangulations.
2/ Every 3-orientation admits a unique Schnyder wood

coloration.
3/ Each color corresponds to a spanning tree and so there

is no monochromatic cycle.
4/ The 3-orientations of a given triangulation have a

structure of distributive lattice.
5/ The minimal element of the lattice has no clockwise

oriented cycle.
6/ Triangulations are in bijection with a particular type of

decorated embedded trees.
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6/ Triangulations are in bijection with a particular type of
decorated embedded trees (Poulalhon and Schaeffer,
2006).
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Properties of the torus case:
1/ We have a notion of 3-orientation for triangulations.
2/ Every 3-orientation admits a unique Schnyder wood

coloration.
3/ Each color corresponds to a spanning tree and so

There is no monochromatic contractible cycle.
4/ The 3-orientations of a given triangulation have a

structure of distributive lattices.
5/ The minimal element of each lattice has no clockwise

oriented contractible cycle.
6/ Triangulations are in bijection with a particular type of

decorated unicellular toroidal maps.
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6/ Triangulations are in bijection with a particular type of
decorated unicellular toroidal maps.

Tree-cotree Decomposition: (T,C,X). T has n− 1 edges,

C has f − 1 edges and X the remaining.
χ = n− (n− 1 + f − 1 + x) + f ⇔ x = 2− χ = 2g

21 / 27
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6/ Triangulations are in bijection with a particular type of
decorated unicellular toroidal maps.
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(j) Number of crossings:
too many!

(k) Number of crossings:
1 → optimal

Three problems:
ú Deciding if a curve can be made simple by homotopy.
ú Finding the minimum possible number of

self-intersections.
ú Finding a corresponding minimal representative.
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Boundaries Simple Number Representative
b > 0 O((g`)2) O((g`)2) O((g`)4)

BS (1984) CL (1987) A (2015)
b = 0 ? ? ?

L (1987) L (1987) dGS (1997)
O(`5) O(`5)

GKZ (2005) GKZ (2005)
Any O(` · log2(`)) O(`2) O(`4)

BS: Birman and Series, An algorithm for simple curves on surfaces.
CL: Cohen and Lustig, Paths of geodesics and geometric intersection numbers: I.
L: Lustig, Paths of geodesics and geometric intersection numbers: II.
A: Arettines, A combinatorial algorithm for visualizing representatives with minimal self-intersection.
dGS: de Graaf and Schrijver, Making curves minimally crossing by Reidemeister moves.
GKZ: Gonçalves, Kudryavtseva and Zieschang, An algorithm for minimal number of (self-)intersection points
of curves on surfaces.
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Publications:
1/ Some Triangulated Surfaces without Balanced Splitting:

Published in Graphs and Combinatorics.
2/ Encoding Toroidal Triangulations: Accepted in Discrete

& Computationnal Geometry.
3/ Computing the Geometric Intersection Number of

Curves: Will be submitted to the next SoCG.

Work in progress:
1/ Looking for a proof that does not require a computer.
2/ There are a lot of implications for the bijection in the

plane. Is it possible to generalized them.
3/ It remains to look at the construction of a minimal

representative for a couple of curves.
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Conjecture

Deciding if there is a simple closed walk in a given
homotopy class is NP-complete and FPT parametrized by
the genus of the surface.
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