Imperial College

London

- | -y
Compiler technology for solving
PDEs with performance portability

Paul H J Kelly
Group Leader, Software Performance Optimisation
Co-Director, Centre for Computational Methods in Science and Engineering

Department of Computing, Imperial College London
Joint work with :
David Ham (Imperial Computing/Maths/Grantham Inst for Climate Change)
Gerard Gorman, (Imperial Earth Science Engineering — Applied Modelling and Computation Group)
Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)
Doru Bercea, Fabio Luporini, Graham Markall, Lawrence Mitchell, Florian Rathgeber, George Rokos (Software
Perf Opt Group, Imperial Computing)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)
Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)
Carlo Bertolli (IBM Research)
Ram Ramanujam (Louisiana State University) -

Imperial College

London

2 a
Compiler technology for solving PDEs

with performance portability

What do we actually gain from domain-specificity?

Paul H J Kelly
Group Leader, Software Performance Optimisation
Co-Director, Centre for Computational Methods in Science and Engineering
Department of Computing, Imperial College London
Joint work with :
David Ham (Imperial Computing/Maths/Grantham Inst for Climate Change)
Gerard Gorman, Michael Lange (Imperial Earth Science Engineering — Applied Modelling and Computation Group)
Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)
Doru Bercea, Fabio Luporini, Graham Markall, Lawrence Mitchell, Florian Rathgeber, Francis Russell, George Rokos,
Paul Colea (Software Perf Opt Group, Imperial Computing)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)
Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)
Carlo Bertolli (IBM Research), Ram Ramanujam (Louisiana State University)
Doru Thom Popovici, Franz Franchetti (CMU), Karl Wilkinson (Capetown), Chris—Kriton Skylaris (Southampton) -

Imperial College
London

This talk is about the
following idea:

B can we simultaneously

B raise the level at which
programmers can
reason about code,

B provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

Imperial College
London

This talk is about the
following idea:

B can we simultaneously

B raise the level at which
programmers can
reason about code,

B provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

Polyhedra
Shape

Dependence
Call-graph
Class-hierarchy
Points-to
Types
Syntax

B Compilation is like skiing
B Analysis is not always the interesting part....

What we
are
doing...

Targetting
MPI,
OpenMP,
OpenCL,
Dataflow/
FPGA, from
supercomp
uters to
mobile,
embedded
and
wearable

PyOP2/0OP2

Unstructured-
mesh stencils

Firedrake

Finite-element

assembly

SLAMBench

Dense SLAM
— 3D vision

PRAgMaTlc
Dynamic
mesh
adaptation

GiIMMIiK
Small-matrix
multiplication

TINTL

Fourier
interpolation

Projects

Finite-volume
CFD

Finite-element

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Unsteady
CFD - higher-
order flux-
reconstruction

Ab-initio
computational
chemistry
(ONETEP)

Contexts

Vectorisation,
parametric
polyhedral tiling

Tiling for
unstructured-
mesh stencils

Lazy, data-driven
compute-
communicate

Runtime code
generation

Multicore graph
worklists

Massive common
sub-expressions

Optimisation of
composite
transforms

Technologies !\

Aeroengine
turbo-
machinery

Weather and
climate

Domestic
robotics,
augmented
reality

Tidal turbines

Formula-1,
@YANVAS

Solar energy,
drug design

Applications

Imperial College
London

)

B Some examples of domain-specific optimisations

B BLINK: visual effects filters — fusion, vectorisation, CUDA
DESOLA: runtime fusion for linear algebra

OP2: (among many) staging for CUDA shared memory
PyOP2: (ditto) fusion and tiling for unstructured meshes
COFFEE: (ditto) generalised loop-invariant code motion
GIMMIK: tiling & full unrolling for block-panel matrix multiply
TINTL: Fourier interpolation for density functional theory

B This talk’'s question:

B What do we actually gain by building domain-specific
tools? Where does the advantage come from?

Imperial College
London

B The standard DSL message.:
B Avoid analysis for transformational optimisation
B Transform at the right level of abstraction
B Get the abstraction right

B But what do we actually gain by building
domain-specific compiler tools?

Unstructured meshes require pointers/indirection because
adjacency lists have to be represented explicitly

A controlled form of pointers

OP2 is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation

PyOP2 is an major extension implemented in Python using
runtime code generation

Generates highly-optimised CUDA, OpenMP and MPI code

Runtime (Seconds)

B Unmodified Fortran OP2 source code
exploits inter-node parallelism using MPI,
and intra-node parallelism using
OpenMP and CUDA

Application is a proprietary, full-scale, in-=e=
production fluids dynamics package

Developed by Rolls Royce plc and used
for simulation of aeroplane engines

(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford)

o

[em—

0.5

0.25

= (0Plus

-EF OP2 MPI (RCB)
~#-0P2 MPI+OMP (RCB)
=A= OP2 MPI (PTScotch)

—a—(0OP2 MPI+OMP (PTScotch)

~@-0P2 MPI+CUDA (PTScotch)

16 32 64
Nodes

(a) Strong Scaling (2.5M edges)

o

LILE= N~~~ 4~ ~

=»~0Plus

=&~ OP2 MPI (PTScotch)

=EF OP2 MPI (RCB)

—a—(OP2 MPI+OMP (PTScotch)
—#-0OP2 MPI+OMP (RCB)

& Dist-Systems 201

~@-0P2 MPI+CUDA (PTScotch)
|

2

4 8

Nodes
(b) Weak Scaling (0.5M edges per node)

B “Performance
portability”

HECToR
(Cray XE6)

Jade
(NVIDIA GPU Cluster)

ore AMD Opteron
6276 (Interlagos)2.3GHz

2xTesla K20m +
Intel Xeon E5-1650 3.2GHz

32GB 5GB/GPU (ECC on)
128 8
Cray Gemini FDR InfiniBand
CLE 3.1.29 Red Hat Linux Enterprise 6.3

Cray MPI 8.14

PGI 133, ICC 13.0.1,
OpenMPI 1.6.4

Reguly, Mudalige et al, IEEE Trans PI

-O3 -h fp3 -h ipab

-02 -xAVX
-arch=sm_35 -use_fast_math

HYDRA: Full-scale industrial CFD using OP2

B Where did the domain-specific advantage come
from?

B Automatic code synthesis, for MPI, OpenMP, CUDA,
OpenCL — single source code, clean API

B Inspector-executor scheme: we know we will iterate over
the mesh many times, so we can invest in partitioning,
colouring etc

B Code synthesis templates to deliver optimised
Implementations, eqg:

B Colouring to avoid read-increment-write conflicts
B Staging of mesh data into CUDA shared memory

B Splitting push loops (that increment via a map) to
reduce register pressure (LCPC2012)

Reguly, Mudalige et al, IEEE Trans PIl & Dist Systems 2015

Sparse split tiling on an unstructured mesh, for locality

Visits edges
Increments nodes

Visits nodes
Depends on edges

B How can we fuse two loops, when there is a “halo”
dependence?

B |.e. load a block of mesh and do the iterations of loop 1, then
the iterations of loop 2, before moving to the next block

B If we could, we could dramatically improve the memory access
behaviour!

Strout, Luporini et al, IPDPS’]

Imperial College

London Sparse split tiling

Visits edges
Increments nodes

Visits nodes
Depends on edges

B Partition the iteration space of loop 1

Strout, Luporini et al, IPDPS’]

Sparse split tiling

Visits edges
Increments nodes

Visits nodes
Depends on edges

Partition the iteration space of loop 1
Colour the partitions

B Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

B Thus, the tile coloured #1 grows where it meets colour #0
B And shrinks where it meets colours #2 and #3

Strout, Luporini et al, IPDPS’]

OP2 loop fusion in practice

Speedup of Airfoil on Sandy Bridge

10 | | | | I !
9 I Intel Sandy Bridge (dual-socket 8-core Intel .~ __—]
Xeon E5-2680 2.00Ghz, 20MB of shared ; | | |
e 8 | L3 cache per socket)~I»n~tel~|cc~2013»(-03 ~~~~~~~~~~~~~~~~~~~~~~~ S RIS T S =
= XSSE4 2/- xAVX) : : r : :
GJ 2 T |
wn
N |
o) 6 Ll AAA —
G>) 5 L AAA |
o a :
o I S L S _
= s ;
D) 3 A 7z i e —
Q : :
& oL .
) : : : : f OP2 - mpi —=—
1€ . SR L L S OP2 - openmp —=— |
: : : : : OP2 - tiling ——=—
0 | | | | | | l
2 4 6 8 10 12 14 16
Threads

B Mesh size = 1.5M edges B Airfoil test problem

w L(?op chain = 6 loops B Unstructured-mesh finite-
B No inspector/plans overhead volume

Sparse split tiling
B Where did the domain-specific advantage come
from?

B OP2’s access descriptors provide precise dependence
iteration-to-iteration information

B We “know” that we will iterate many times over the same
mesh — so It's worth investing in an expensive “inspector-
executor’” scheme

B We capture chains of loops over the mesh
B We could get our compiler to find adjacent loops
B We could extend the OP2 API with “loop chains”
B What we actually do?
B We delay evaluation of parallel loops
B We build a chain (DAG) of parallel loops at runtime
B \We generate code at runtime for the traces that occur

Strout, Luporini et al IPDPS 2014

Imperial College

The finite element method in outline

_

ar

K = [

do element = 1,N

%/I assemble(element)
J K lend do

/UL(‘ll(S)dX:/ vgdX.
0 0

) Ax=0b

{__

B Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

Imperlal College

Multilayered abstractions for FE

_

B Local assembly:

B Specified using the FENICS project’s DSL, UFL
(the “Unified Form Language”)

B Computes local assembly matrix

B Key operation Is evaluation of expressions over
basis function representation of the element

® Mesh traversal:
B OP2

B Loops over the mesh

B Key Is orchestration of data movement
~ |® Solver:

B Interfaces to standard solvers, such as PetSc

-
A weak form of the shallow water equations

/qV-udV=—/ u-n(¢g" —q)dS
Q rE

/v-Vth=c2/ (ht —h)n-vdS
«Q e

can be represented in UFL as

Raviart -Thomas’,
2DG 2 0)

FunctionSpace (mesh,
FunctionSpace (mesh,
V*H

q) = TestFunctions (W)

h) = TrialFunctions (W)

= inner (v,u) *dx

= q*h*dx
= —-inner (avg(u), jump(q,n)) *dS
c**2*xadjoint (Ct)

fxinner(v,as_vector ([-ul[1],ul[0]])) *dx
assemble (M_u+M_h+0.5*xdt*(C-Ct+F))

= M_u+M_h-0.5*%dt*(C-Ct+F)

1)

The FEnICS
project’s Unified
Form Language

(UFL)

s

Local assembly kernel

void Mass(double localTensor [3][3])
{

const double qwl(6] = { ... };

const double CG1[3][6] = { ...
for(int i = 0; i < 3; i++)

for(int j = 0; j < 3; j++)
for(int g = 0; g < 6; g++)
localTensor [i][j]
+= CG1[il[g] * CG1[jllgl * qwlgl);

2

parallel loop

over all grid cells,

in unspecified order,
partitioned

unstructured grid
defined by vertices,
edges and cells

Firedrake:

B An alternative implementation of the FEnICS language
B Using PyOP2 as an intermediate representation of parallel loops

B All embedded in Python

B The FEnICS project’s UFL —
DSL for finite element

Unified Form discretisation
Language

B Compiler generates PyOP2
kernels and access descriptors

FENICS Form
Compiler

Non-FE loops

Stencil DSL for unstructured-mesh

EXxplicit access descriptors
characterise access footprint of
kernels

B Runtime code generation

COFFEE kernel
optimiser/vectoriser

: Manycore Future/
Multicore IGPU

AN
00]
~~

, Ham, Mitchell et al, http://arxiv.org/abs/1501.01809

©Rathgeber

B The advection- oT)
diffusion problem: — =DVl —u-VT

B Weak form:

T
qa— dX =
o Ot o9

B This is the
entire
specification
for a solver for
an advection-
diffusion test
problem

B Same model
Implemented
In FENICS/
Dolfin, and
also in Fluidity
— hand-coded
Fortran

ot

Diffusion Advection

q(VT—uT)-nds—/Vq-VTdX+/Vq-quX
Q Q

t=state.scalar_fields["Tracer"]
u=state.vector_ fields["Velocity"]

p=TrialFunction(t)
g=TestFunction(t)

M=p*qg*dx
d=-dt*dfsvty*dot(grad(q),grad(p))*dx
D=M-0.5%*d

adv = (g*t+dt*dot(grad(q),u)*t)*dx
diff = action(M+90.5*d,t)

solve(M == adv, t)
solve(D == diff, t)

Extract fields
from Fluidity

Setup test and
trial functions

Mass matrix
Diffusion term
Diffusion matrix

Advection RHS
Diffusion RHS

Solve advection
Solve diffusion

49/9

mperaiColege— Firedrake — single-node performance

B Here we compare 3cl?enchmark of an advection-diffusion problem for 100 time steps
performanc_e agalnSt — Fluidity (1 core) +++ DOLFIN MPI (12 cores)
two pI’OdUCtIOI’] * % DOLFIN (1 core) <—<« PyOP2 MPI (12 cores)

¢—0 PyOP2 sequential (1 core) 4= PyOP2 CUDA (1 GPU)
.......... B & Fluidity MPI (12 cores) i

codes solving the
same problem on the:
same mesh:

B Fluidity: Fortran/
C++

B DOLFIN: the
FENICS project’s
Implementation
of UFL

These results are preliminary
and are presented for
discussion purposes — see
Rathgeber, Ham, Mitchell et
al,

N
(0]
!

N
o

=
(=)

Relative speedup over Fluidity baseline
|_I
(0]

Markall, Rathgeber et al, ICS’13

ul

20%000 300000 400000 500000 600000 700000 800000 90000C

for more systematic Number of elements in the mesh

evaluation B Graph shows speedup over Fluidity on one core
of a 12-core Westmere node

Firedrake
B Where did the domain-specific advantage come
from?

B UFL (the Unified Form Language, inherited from the
FENICS Project)

B Delivers spectacular expressive power
B Reduces scope for coding errors

B Supports flexible exploration of different models,
different PDEs, different solution schemes

B Building on PyOP2
B Handles MPI, OpenMP, CUDA, OpenCL
B Completely transparently

B PyOP2 uses runtime code generation
So we don’t need to do static analysis

B So the layers above can freely exploit unlimited
abstraction

Rathgeber, Ham, Mitchell et al, http://arxiv.org/abs/1501.01809

from?

Firedrake
B Where did the domain-specific advantage come

B The adjoint of the PDE characterises the sensitivity of the
PDE’s solution to input variables; it is usually derived by

automatic differentiation of the solver code:

implement model by hand\

» | forward code

discrete forward equations

B With UFL we have access to the PDE so we can generate

the adjoint solver directly:

discrete forward equations

algorithmic differentiationl

FEnICS/Firedrake

Iibadjointl

discrete adjoint equations

FEnICS/Firedrake

>

>

adjoint code

forward code

adjoint code

Farrell, Ham, Funke, Rognes, SIAM J. Sci Comp. 2013

Imperial College COFFEE: Optimisation of kernels

void helmholtz(double A[3][3], double **coords) {
/l K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X_D10[3][3]
static const double X_D01[3][3]

111}
-1}

for (inti=0;1<3; i++)
for (intj = 0; j<3; j++)
for (int k = 0; k<3; k++)

Aljllk] += ((Y[TkI*YT1][]+
+((K1*X_D10[i1[k]+K3*X_D01[il[k])*(K1*X_D10[i1[j1+K3*X_DO1[il[j])+
+((KO*X_D10[i1[k]+K2*X_DO01[il[k])*(K0*X_D10[i1[j1+K2+*X_DO1[il[j1))*
*det*WI[il);

}
B Local assembly code generated by Firedrake for a Helmholtz

problem on a 2D triangular mesh using Lagrange p = 1 elements.
B The local assembly operation computes a small dense submatrix
B Essentially computing (for example) integrals of flows across facet

B These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

wn Luporini, Varbenescu et al, ACM TACO/HIPEAC 201

Imperial College COFFEE: Optimisation of kernels

I . e———
void helmholtz(double A[3][3], double **coords) {

/l K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X_D10[3][3]
static const double X_D01[3][3]

111}
-1}

for (inti=0;1<3; i++)
for (intj = 0; j<3; j++)
for (int k = 0; k<3; k++)

Aljllk] += ((Y[TkI*YT1][]+
+((K1*X_D10[i1[k]+K3*X_D01[il[k])*(K1*X_D10[i1[j1+K3*X_DO1[il[j])+
+((K0*X_D10[i][k]+K2*X_DO01[i][k])*(K0*X_D10[i][j]+K2*X_DO1[il[1))*
*det*WI[il);

}
B Local assembly code generated by Firedrake for a Helmholtz

problem on a 2D triangular mesh using Lagrange p = 1 elements.
B The local assembly operation computes a small dense submatrix
B Essentially computing (for example) integrals of flows across facets

B These are combined to form a global system of simultaneous

equations capturing the discretised conservation laws expressed by
the PDE

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

Imperial College COFFEE: Optimisation of kernels

void helmholtz(double A[3][4], double **coords) { B Local assembly code

#define ALIGN __attribute__((aligned(32))) for the Helmholtz
// K, det = Compute Jacobian (coords) problem after
application of

static const double W[3] ALIGN = {...}
static const double X_D10[3][4] ALIGN =

. B padding,
static const double X_DO01[3][4] ALIGN = {{.

ﬁ B data alignment,

E Loop-invariant
for (int i = 0;i<3;i++) { code motion
double LI_0[4] ALIGN; P In thlS examp|e SUb-

double LI_1[4] ALIGN; expressions invariant

for (intr = 0; r<4; r++) {
LI O[r] = (K1*X_D10[i][r)+(K3*X_DO1[il[r])); tﬂésﬂ?nlsgﬂgﬁ? ![(gok SO

}L1_1[r] = (KO*X_D10GIrD+(K2* X DOIGIXD) they can be

precomputed once In
the r loop

~

for (intj = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
AlIk] += (YLIKI*Y]G+ LI_O[KI*LI_O[j1+ LI_1[k]*LI_1[j1)*det *WIil);
}

}

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

mperial College Kernels are often a lot more complicated

void burgers(double A[12][12], double **coords, double **w) I Local assembly code

B Including loop fission

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)

Aljllk] += (..(K56*F9)+(K8*F10))*Y1[il[; D+
+((KO0*X1_D100[11[kD+(K3*X1_DO010[i][k D+(K6*X1_D001[il[k]))*Y2[il[jD)*F11)+
+(..(K2*X2_D100[1][kD+...+(K8*X2_D001[i][k]))*((K2*X2_D100[1][jD+...+(K8%*X2_D001[il[j]1))..)
+ <roughly a hundred sum/muls go here>)..)*

*det*WIi]);

O
/I K, det = Compute Jacobian (coords) generated by Firedrake §
@)

static const double W[5] = {...} for a Burgers prObIem j
static const double X1_D001[5][12] = {{...}} on a 3D tetrahedral o
static const double X2 _D001[5][12] = {{...}} mesh using Lagrange P <
//11 other basis functions definitions. = 1 elements 8
<C
for (int i = 0;i<5; i++) { E Somewhat more "
double FO = 0.0; complicated! g
//10 other declarations (F1, F2,...) 2 Examples like this =
for (int r = 0; r<12; r++) { motivate more complex =
FO += (wlr][0]*X1_D100[il[r]); transformations @
//10 analogous statements (F'1, F2, ...) -
E

£

S

Q.

3

+

Imperial College COFFEE: Performance impact

Static linear elasticity - polynomial order 1 Static linear elasticity - polynomial order 2
90

3.5

T T
Assembly XX Assembly XX
3L Solve mZzzzs | 80 - Solve Ezzzzd
AN AN Other C=—3 Other C=—X
70 +

2.5

N N N 60

50 |-

1.5 40 +

K
(RS 10 -
a0 01000092

5 opt no-opt ¢ opt no-opt opt

30

Execution time (secs)
Execution time (secs)

20

0.5 -

no-optf opt

Number of coefficient functions Number of coefficient functions

B Fairly serious, realistic example: static linear elasticity, p=2
tetrahedral mesh, 196608 elements

B Including both assembly time and solve time
B Single core of Intel Sandy Bridge

B Compared with Firedrake loop nest compiled with Intel’s icc
compiler version 13.1

B At low p, matrix insertion overheads dominate assembly time

B At higher p, and with more coefficient functions (f=2), we get up to
1.47x overall application speedup

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

COFFEE
B Where did the domain-specific advantage come
from?

B Finite-element assembly kernels have complex structure
B With rich loop-invariant expression structure
B And simple dependence structure

B COFFEE generates C code that we feed to the best
available compiler

B COFFEE’s transformations make this code run faster

B COFFEE does not use any semantic information not
available to the C compiler

B But it does make better decisions
B For the loops we’re interested in

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

B Where did the domain-specific advantage come

from?

1 int A[100];

2 int x=0, y=0;

3 for (int i=0; i<100; i4++4) {

4 for (int j=0; j<100; j++) {
5 x+=A[i][i]*A[n—i][n—i];

6 y+=A[]] [n—j | *A[n—j][]];

7 }

8 } y is variant in j, but recomputed

on each i iteration

00 O T Wi~

Ne)

10
11
12
13

int
int
int
for

}

for

t1[j]=Al)][n=j]*A[n—j][]];

int t2 = A[i][i]*A[n—1i][n—1i]
for (int j=0; j<100; j++) {

}
}

COFFEE

A[100];

x=0, y=0;

t1[100];

(int j=0; j<100; j++) {

(int i=0; 1i<100; i++) {

X+=t2 ;
y+=t1;

X is invariant in j — interchange
doesn’t help

COFFEE does “generalised” loop-invariant code motion (GLICM)
“an expression in a loop L is invariant with respect to a parent loop P if each of its

operands is
B defined outside of P,
B oris the induction variable of L,

B oris the induction variable of a superloop of L which is also a subloop of P.”
We have an implementation for LLVM... preliminary evaluation suggests rather

few general C programs benefit from GLICM

Paul Colea, MSc thesis, Imperial

Imperial College

ivisrh Conclusions
e e e

B Where do DSO opportunities come from?
B Domain semantics (eg in SPIRAL)

B Domain expertise (eg we know that inspector-executor will
pay off)
B Domain idiosyncracies (eg for GLICM)
B Transforming at the right representation
B Eg fusing linear algebra ops instead of loops
B Data abstraction (eg AoS vs So0A)

B Or whether to build the global system matrix (in instead
to use a matrix-free or local-assembly scheme)

B Runtime code generation is liberating
B We do not try to do static analysis on client code
B We encourage client code to use powerful abstractions

Imperial College

Acknowledgements
= = = |
Partly funded by
B NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/100677X/1)

EPSRC “PSL” project (EP/1006761/1)

Rolls Royce and the TSB through the SILOET programme
EPSRC “PAMELA” Programme Grant (EP/K008730/1)
EPSRC “PRISM” Platform Grant (EP/1006761/1)

EPSRC “Custom Computing” Platform Grant (EP/1012036/1)
AMD, Codeplay, Maxeler Technologies

Code:
B http://www.firedrakeproject.orqg/
B http://op2.github.io/PyOP2/

London o€ PyOP2 is on github

& - C [I op2.github.io/PyOP2/

PyOP2 0.10.0 documentation »

Table Of Contents Welcome to PyOP2’s documentation!

Welcome to PyOP2’s

documentation! Contents:
Indices and tables
Next topic . Installing PyOP2
Installing PyOP2 S Qu'c!(.Sta'.1 : :
o Provisioning a virtual machine
This Page o Preparing the system
o Dependencies
Show Soures o Building PyOP2
Quick search o Setting up the environment
o Testing your installation
_m o Troubleshooting
Enter search terms or a module, « PyOP2 Concepts .
class or function name. o Sets and mappings
o Data
o Parallel loops
o PyOP2 Kernels
o Kernel API

o Data layout

o Local iteration spaces
The PyOP2 Intermediate Representation

o Using the Intermediate Representation

o Achieving Performance Portability with the IR

o Optimizing kernels on CPUs

o How to select specific kernel optimizations
PyOP2 Architecture

o Multiole Backend Subport

Imperial College

Firedrake i1s on github

(ENRNENNNN
& = C | www.firedrakeproject.org A

L HeNe) @ Indices and tables — Fire

‘Firedrake

Download Team

Firedrake is an automated system for the portable solution of partial differential equations using the finite element method (FEM).
Firedrake enables users to employ a wide range of discretisations to an infinite variety of PDEs and employ either conventional CPUs
or GPUs to obtain the solution.

—

Firedrake employs the Unifed Form Language (UFL) and FEniCS Form Compiler (FFC) from the FEniCS Project and fields and
meshes from Fluidity. The parallel execution of the FEM solver is accomplished by the PyOP2 system.

» The Firedrake team
Summer students 2013
« Obtaining Firedrake
> PyOP2
Firedrake

-

ImperlaICoIIege The FE”'CS prOJECt

The book

806 @ Automated Solution of DIl % \ _
<« C [www.amazon.co.uk/Automated-Solution-Differential-Equations-Element/dp/3642230989 T =
““"‘ii ~,'.‘
amazon.co.uk P's Amazon TodaysDeais GiftCards Sell Help Try Prime Free for oD D’in rslgn uj
Shop by Hello, P Try
Department v — m Your Accountv Prime v =7 Basket v
Books Advanced Search Browse Genres Best Sellers New & Future Releases Paperbacks Seasonal Offers Study Books Audiobooks Sell Your Books

and thousands of other textbooks are available for instant download on your Kindle Fire tablet or on the free Kindle apps for iPad, Andr

Click to LOQK_J[_ISEE!

N N I T R LR Ll T L
& FENICS : >
OEC

LECTURE NOTES IN COMFUTATIONAL
SCIENCE AND EXGINEERING

=

And
~Aahdre

(IS "'!

Ander Ll(u Mardal

Garth N. We

p Share X] ¥
AUtomatEd SOlUthﬂ In stock but may require up to 2
i i i additional days to deliver.
Of Dlﬁerentlal Equatlons Dispatched from and sold by Amazon. Gift-wrap
by the Finite Element available.
Method 32 new from £48.11 8 used from £51.23
www.amazon.co.uk/deals—offers—savings/b/ref=cs_top_nb27?ie=UTF8&node=350613011 — 14>

tablets, PC or Mac.

Automated Solution of e
Differential Equations by the S ST
Finite Element Method: The Add to Basket
FENICS Book (Lecture Notes in or
Computational Science and e i
Engineering) [Hardcover] [Addtowishlist |

Anders Loqqg (Editor), Kent-Andre Mardal (Editor),
Garth Wells (Editor)

Be the first to review this item

More Buying Choices

40 used & new from £48.11

Price: £62.99 & this item Delivered
FREE in the UK with Super Saver
Delivery. See details and conditions

Have one to sell? [Sell yours here

Imperial College

o Abstraction...
= = = |
B computer science Is a science of
abstraction — creating the right model
for thinking about a problem and
devising the appropriate mechanizable
techniques to solve it
(Aho and Ullman, Foundations of Computer

Science, Chl, http://infolab.stanford.edu/
~ullman/focs.html)

