Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

Armelle Bauer 2, 3, Ali-Hamadi Dicko 2, 4, François Faure 2, 4, Olivier Palombi 1, 2, 4, Jocelyne Troccaz 3

1 LADAF, 2 LJK, 3 TIMC-IMAG, 4 AnatoScope — INRIA, CNRS, Univ. Grenoble Alpes

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.
Overview

Related Work:
- Learning anatomy media
- Using new technologies
- Mirror-like augmented reality (AR)

Our approach:
- The Living Book of Anatomy (LBA)
- User registration Step
- User tracking Step

Conclusion
- Results
- Conclusion and future work
Overview

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

Related Work:
- Learning anatomy media
- Using new technologies
- Mirror-like augmented reality (AR)

Our approach:
- The Living Book of Anatomy (LBA)
- User registration Step
- User tracking Step

Conclusion
- Results
- Conclusion and future work
Motivation: Learning Anatomy

Anatomy: static and dynamic structured knowledge

To make the complex task of anatomy learning easier:

- cadaver dissections
- drawings, books
- 3D models

Learning anatomy for: medicine students, sports students, general education.
Mixed reality to learn anatomy

HoloLens [Microsoft]

Virtual-Tee

S.A.G.E. [Anderson & all, 2012]

Visible korean human phantom [Navab 2008]
Mirror-like Augmented Reality

Visualization and Interaction with anatomical content displayed onto the user’s color map in **real-time**:

- **Magic Mirror** [Blum et al, 2012]
- **Digital Mirror** [Maître, 2014]
- **Anatomie Spiegel** [Borner et al, 2015]

We improve these works by:
- Displaying a **user-specific anatomy** superimposed onto the user’s color map.
- Animating the 3D model in **real-time** by maximizing anatomical plausibility.
Overview

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

Related Work:
- Learning anatomy media
- Using new technologies
- Mirror-like augmented reality (AR)

Our approach:
- The Living Book of Anatomy (LBA)
- User registration Step
- User tracking Step

Conclusion
- Results
- Conclusion and future work
Results of our system

Living Book of Anatomy (LBA)

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.
Pipeline of our system

1. **Generic 3D model**
2. **User’s measurements**
3. **Anatomy Knowledge**

Steps:
- **Calibration**
- **Motion Tracking**
- **LBA**
Overview

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

Related Work:
- Learning anatomy media
- Using new technologies
- Mirror-like augmented reality (AR)

Our approach:
- The Living Book of Anatomy (LBA)
- User registration Step
- User tracking Step

Conclusion
- Results
- Conclusion and future work
Anatomy registration: state of the art

Quah et al [2005]

Saito et al [2015]

Zhu et al [2015]

Dicko et al [2014]
Our method: registration pipeline

Anatomy Transfer
Ali-Hamadi Dicko, Tiantian Liu, Benjamin Gilles, Ladislav Kavan, François Faure, Olivier Palombi, Marie-Paule Cani
ACM Transactions on Graphics (TOG), 2013
Step 1: key points computation

Key points are used to define body joint positions and body measurements for skin registration.

Body Segment Measurements

Color map Silhouette

Kinect output

Calibration routine: 3 body positions

User’s key points

- Skeleton Key points
- Body measurements key points
Step 2: skin registration

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

- Skeleton key points
- Silhouette key points
- Point cloud

> female 1,55m
> male 1,85m
Step 3: skeleton registration

Anatomy Consistency rules:
- **R01**: Keep long bones straightness (*no bending or twisting*)
- **R02**: Keep 3D model consistency: the complete set of entities is transferred to avoid holes
- **R03**: Keep bone head consistency
- **R04**: Keep consistency of rib cage and limbs: symmetry with respect to the sagittal plane
- **R05**: Keep body joints consistency: type of joint and movement amplitude

Different types of anatomical bones:
- **Short bones**: 1 frame in the middle
- **Long bones**: 2 frames, one at each bone head
- **Flat bones**: 3 frames equally placed
- **Complex bones**: 3-4 frames equally placed
- **Complete skull**: 5 frames equally placed
Results and MRI evaluation

User-specific Anatomy

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.
Overview

Related Work:
- Learning anatomy media
- Using new technologies
- Mirror-like augmented reality (AR)

Our approach:
- The Living Book of Anatomy (LBA)
- User registration Step
- User tracking Step

Conclusion
- Results
- Conclusion and future work
User tracking: state of the art

> Meng et al [2013]

> Wei et al [2012]

> Zhou et al [2014]

> Zhu et al [2015]
Our method: tracking pipeline

Input:
- **Body tracking skeleton**
 (25 joints positions)
- Smoothing of small tracking noise
 (Kalman filter on positions)
- Hierarchical body tracking system
 (in-between joint distances)
- Anatomically con strained joint Orientations
 (dofs and angle limits)

Output:
- **Realistic body tracking**
 (body joints position and orientations)

Real-time Motion using a commodity depth camera

Comparison between rough Kinect data and our system:

Rough Kinect Tracking Skeleton

Rough Kinect data
Hierarchical body tracking

(a): our hierarchical body tracking skeleton at (t0).
(b): Kinect body tracking skeleton at (t).
(c): our result.

The 3x3 rotation matrix R:

$$\alpha = \arcsin \left(\frac{\| \vec{f}_c(t_0) \times \vec{f}_c(t) \|}{\| \vec{f}_c(t_0) \times \vec{f}_c(t) \|} \right)$$

$$axis = \frac{\vec{f}_c(t_0) \times \vec{f}_c(t)}{\| \vec{f}_c(t_0) \times \vec{f}_c(t) \|}$$

Anatomical constrained joint orientations:

red: Kinect rough data
gray: corrected data
Tracking evaluation: user study

To evaluate the quality of our mirror-like AR system.

<table>
<thead>
<tr>
<th></th>
<th>C01</th>
<th>C02</th>
<th>C03</th>
<th>C04</th>
<th>C05</th>
<th>C06</th>
</tr>
</thead>
<tbody>
<tr>
<td>bad</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>average</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>good</td>
<td>16</td>
<td>7</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

The user study group is composed of:
- 13 men between 24 and 54 years old (average height: 181 cm, average weight: 82.6 kg)
- 7 women between 22 and 44 years old (average height: 164 cm, average weight: 61.7 kg)

(C01) Body position range
motions while standing, crouching or sitting.

(C02) Body orientation range
body orientation from Kinect point of view: facing, profile, 3/4, back.

(C03) Motion range
- simple motions like Flexion/extension of the knee
- complex motions in the extremities (finger motion, etc.)

(C04) Motion fluidity and delay

(C05) Motion consistency
absence of outliers during motion.

(C06) Motion plausibility
joint DOFs and angular limits.
Overview

Related Work:
- Learning anatomy media
- Using new technologies
- Mirror-like augmented reality (AR)

Our approach:
- The Living Book of Anatomy (LBA)
- User registration Step
- User tracking Step

Conclusion
- Results
- Conclusion and future work
Our results

Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

Required Motion

Extreme Motion

Fitness Motion

Free Motion
Conclusion

Thanks to the use of **anatomical knowledge**, we significantly **improve AR realism** and **anatomy motion plausibility** with respect to our previous works in the Living Book of Anatomy project.

Future Work:

- Silhouette retargeting: to ensure that the 3D user-specific data always lies within it
- Biomechanical simulation: for more realistic soft tissues deformations
- Inverse Dynamics: for full body muscular activity

Living Book of Anatomy (LBA) Project: See your Insides in Motion!

Armelle Bauer, Ali-Hamadi Dicko, Olivier Palombi, François Faure, Jocelyne Troccaz

Emerging Technologies – Siggraph Asia, 2015

Interactive Visualization of Muscle Activity During Limb Movements: Towards Enhanced Anatomy Learning

Armelle Bauer, Florent Paclet, Violaine Cahouet, Ali-Hamadi Dicko, Olivier Palombi, François Faure, Jocelyne Troccaz

Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), 2014
Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera.

Armelle Bauer 2, 3, Ali-Hamadi Dicko 2, 4, François Faure 2, 4, Olivier Palombi 1, 2, 4, Jocelyne Troccaz 3

1 LADAF, 2 LJK, 3 TIMC-IMAG, 4 AnatoScope — INRIA, CNRS, Univ. Grenoble Alpes

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.