
OrchIDS: on the value of
rigor in intrusion detection
Jean Goubault-Larrecq

CPS, Grenoble, July 08 2014

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Example 1: Slammer (2003)

• An internet worm designed to propagate quickly

• which did not do anything...

• ... except propagate ...

• ... and bring networks to their knees

vendredi 11 juillet 14

Slammer: Jan. 25, 2003, 05:29

vendredi 11 juillet 14

Slammer: Jan. 2003, 06:00

vendredi 11 juillet 14

Slammer: impact

• 911 emergency number in Seattle: down

• Canceled flights Newark hub, Continental Airlines

• Internet down in Portugal, South Korea

• No mobile phone service, South Korea

• 5 out of the 13 Internet backbone servers down

• Estimated cost: > $ 1 billion

vendredi 11 juillet 14

Slammer: impact

vendredi 11 juillet 14

Slammer: impact

vendredi 11 juillet 14

Anatomy of the beast

• Terribly small: 376 bytes

• Does nothing... except propagate

• Took networks down, worldwide,
by flooding them with copies of itself
(Denial of Service)

Faut-il avoir peur des hackers?

Faut-il avoir peur? Oui.

Le coupable: Slammer (= Sapphire)

Tout petit: 376 octets;
Ne fait rien, sauf se propager;
Il a simplement fait s’écrouler les
réseaux mondiaux en les inondant de
copies de lui-même.

Paul Boutin, Slammed!, WiReD magazine 11.07, July 2003,
http://www.wired.com/wired/archive/11.07/slammer.html

vendredi 11 juillet 14

Computer (in)security

Faut-il avoir peur des hackers?

Les hackers

La “Mitnick Attack” (1994)

Mitnick a popularisé l’IP spoofing.
(découverte par Robert T. Morris II en 1980 — le père de RTM III, auteur de l’Internet Worm. . .)

David Icove, Karl Seger, and William VonStorch, Computer Crime A Crimefighter’s Handbook , O’Reilly, août 1995,
http://oreilly.com/catalog/crime/chapter/f 02 05.gif

vendredi 11 juillet 14

Computer (in)security
Feb. 19, 2010, http://www.darkgovernment.com/news/massive-cyber-attacks-uncovered/

http://socks-studio.com/2012/07/17/
stuxnet-anatomy-of-the-first-weapon-made-entirely-out-of-code/

http://defensetech.org/2008/08/13/cyber-war-2-0-russia-v-georgia/

http://www.docstoc.com/docs/22073608/Estonia-cyber-attacks-2007

http://www.radio-canada.ca/nouvelles/International/
2013/04/07/002-anonymous-attaques-israel.shtml

vendredi 11 juillet 14

http://www.darkgovernment.com/news/massive-cyber-attacks-uncovered/
http://www.darkgovernment.com/news/massive-cyber-attacks-uncovered/
http://socks-studio.com/2012/07/17/stuxnet-anatomy-of-the-first-weapon-made-entirely-out-of-code/
http://socks-studio.com/2012/07/17/stuxnet-anatomy-of-the-first-weapon-made-entirely-out-of-code/
http://socks-studio.com/2012/07/17/stuxnet-anatomy-of-the-first-weapon-made-entirely-out-of-code/
http://socks-studio.com/2012/07/17/stuxnet-anatomy-of-the-first-weapon-made-entirely-out-of-code/
http://defensetech.org/2008/08/13/cyber-war-2-0-russia-v-georgia/
http://defensetech.org/2008/08/13/cyber-war-2-0-russia-v-georgia/
http://www.docstoc.com/docs/22073608/Estonia-cyber-attacks-2007
http://www.docstoc.com/docs/22073608/Estonia-cyber-attacks-2007
http://www.radio-canada.ca/nouvelles/International/2013/04/07/002-anonymous-attaques-israel.shtml
http://www.radio-canada.ca/nouvelles/International/2013/04/07/002-anonymous-attaques-israel.shtml
http://www.radio-canada.ca/nouvelles/International/2013/04/07/002-anonymous-attaques-israel.shtml
http://www.radio-canada.ca/nouvelles/International/2013/04/07/002-anonymous-attaques-israel.shtml

The Mitnick Attack (1994)

Easy! (for an expert)

14:11:49 toad.com# rpcinfo −p OSIRIS
14:12:05 toad.com# finger −l root@OSIRIS

14:11:38 toad.com# showmount −e OSIRIS

14:09:32 toad.com# finger −l @ARIEL
14:10:21 toad.com# finger −l @RIMMON
14:10:50 toad.com# finger −l root@RIMMON
14:11:07 toad.com# finger −l @OSIRIS

...

14:18:37 [root@apollo /tmp]#rsh OSIRIS "echo + + >>/.rhosts"

vendredi 11 juillet 14

The Mitnick Attack (in 2009)

Using off-the-shelf software, e.g.:

vendredi 11 juillet 14

International conferences

vendredi 11 juillet 14

On-line journals

Faut-il avoir peur des hackers?

Quelques idées reçues sur les hackers

Les hackers sont des génies?

Des journaux en anglais

vendredi 11 juillet 14

Also en français

vendredi 11 juillet 14

On-line courses

vendredi 11 juillet 14

Google, Wikipedia are your friends

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

ORCHIDS

http://www.lsv.ens-cachan.fr/Software/orchids/v2.1/

Jean Goubault-Larrecq Julien Olivain
Baptiste Gourdin

Nasr-Eddine YousfiHedi Benzina Pierre-Arnaud
Sentucq

vendredi 11 juillet 14

http://www.lsv.ens-cachan.fr/Software/orchids/v2/
http://www.lsv.ens-cachan.fr/Software/orchids/v2/

The ptrace attack (Purczynski 2001, 2003): demo

• local-to-root exploit

• will serve to explain some of the basic notions
behind ORCHIDS

vendredi 11 juillet 14

Compile attack file linux-ptrace-1.c....

The ptrace attack (Purczynski 2001, 2003): demo

vendredi 11 juillet 14

Run attack: linux-ptrace-1

The ptrace attack (Purczynski 2001, 2003): demo

vendredi 11 juillet 14

The ptrace attack (Purczynski 2001, 2003): demo

Run attack: linux-ptrace-1

vendredi 11 juillet 14

So what?

The ptrace attack (Purczynski 2001, 2003): demo

vendredi 11 juillet 14

The ptrace attack (Purczynski 2001, 2003): demo

So what?

vendredi 11 juillet 14

The ptrace attack (Purczynski 2001, 2003): demo

So what?

vendredi 11 juillet 14

The ptrace attack (Purczynski 2001, 2003): demo

So what?

vendredi 11 juillet 14

Oops...

The ptrace attack (Purczynski 2001, 2003): demo

vendredi 11 juillet 14

ORCHIDS

• A intrusion detection/prevention tool

• developed at LSV (ENS Cachan, INRIA, CNRS) since 2002
by: JGL, J. Olivain, B. Gourdin, N.-E. Yousfi, P.-A. Sentucq

• fast

• real-time

• on-line/off-line

• multi-sources

vendredi 11 juillet 14

ptrace vs. ORCHIDS

Let’s rerun the attack...
 with ORCHIDS on, this time

vendredi 11 juillet 14

ptrace vs. ORCHIDS

The attack succeeded...
 and ORCHIDS kicked the attacker out

vendredi 11 juillet 14

ptrace vs. ORCHIDS

The attack succeeded...
 and ORCHIDS kicked the attacker out

vendredi 11 juillet 14

ptrace vs. ORCHIDS

The attack succeeded...
 and ORCHIDS kicked the attacker out
 ... and for good

vendredi 11 juillet 14

ptrace vs. ORCHIDS

The attack succeeded...
 and ORCHIDS kicked the attacker out
 ... and for good

vendredi 11 juillet 14

Detailed reports on attacks

vendredi 11 juillet 14

Time for a demo, for real

• The semtex local-to-root exploit (sd@fucksheep.org, May 2013)
Bug:
In file kernel/events/core.c: int event_id = event->attr_config; /* u64 */

• Caught by the pid_tracker OrchIDS rule,

an (almost) universal local-to-root exploit detector:
checks conformance to Linux uid change policy

• The same rule catches:
 do_brk (2003)
 do_mremap (2004)
 do_mmap (2005)
 vmsplice (2008)

(Pid, $Euid, $Egid)

(Pid, $Egid)

setgid32

vfork

(Pid, $Euid, $Egid)(Pid, $Euid, $Egid)

fork

setresuid32

(Pid, $Euid)

4

31

1

!

!

!

!

!

$Egid

$Euid

(Pid)

exit

changes

or

*

OK

execve
Alert

vendredi 11 juillet 14

mailto:sd@fucksheep.org
mailto:sd@fucksheep.org

• The monitored machines collect
 events:

• We look for signatures
that identify the attack:

How it works

Faut-il avoir peur des hackers?

Orchids

Détection d’attaque avec Orchids

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

Imaginons le flux d’événements (∼ log):
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Faut-il avoir peur des hackers?

Orchids

Détection d’attaque avec Orchids

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

Imaginons le flux d’événements (∼ log):
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

...

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

¡(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

How Does ORCHIDS Detect It? The Signature.

rule ptrace

{

state init

{

if (.rawsnare.syscall == "(26) SYS_ptrace" &&

.rawsnare.ptrace_req == "(16) PTRACE_ATTACH" &&

.rawsnare.euid != 0 &&

.rawsnare.egid != 0)

goto ptrace_attach;

}

state ptrace_attach

{

$attack_pid = .rawsnare.pid;

$target_pid = .rawsnare.ptrace_pid;

$attacker_uid = .rawsnare.euid;

$counter = 0;

if (.rawsnare.syscall == "(11) SYS_execve" &&

.rawsnare.path == "/sbin/modprobe" &&

.rawsnare.pid == $target_pid)

goto exec_modprobe;

}

...

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

How Does ORCHIDS Detect It? The Signature.

rule ptrace

{

state init

{

if (.rawsnare.syscall == "(26) SYS_ptrace" &&

.rawsnare.ptrace_req == "(16) PTRACE_ATTACH" &&

.rawsnare.euid != 0 &&

.rawsnare.egid != 0)

goto ptrace_attach;

}

state ptrace_attach

{

$attack_pid = .rawsnare.pid;

$target_pid = .rawsnare.ptrace_pid;

$attacker_uid = .rawsnare.euid;

$counter = 0;

if (.rawsnare.syscall == "(11) SYS_execve" &&

.rawsnare.path == "/sbin/modprobe" &&

.rawsnare.pid == $target_pid)

goto exec_modprobe;

}

...

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

Jan 26 20:34:13 darkstar kernel: PPP line discipline registered.
Jan 26 20:34:13 darkstar kernel: cs: IO port probe 0x0100-0x03ff: excluding 0x100-0x107
Jan 26 20:34:13 darkstar kernel: cs: IO port probe 0x0a20-0x0a27: clean.
Jan 26 20:34:13 darkstar kernel: cs: memory probe 0x0c0000-0x0fffff: excluding 0xe0000-0xfffff
Jan 26 20:34:13 darkstar kernel: tty01 at 0x02f8 (irq = 3) is a 16550A
Jan 26 20:34:49 darkstar login[87]: ROOT LOGIN on `tty1'
Jan 26 20:42:03 darkstar init: Switching to runlevel: 0
Jan 26 22:27:00 darkstar syslogd 1.3-0#: restart.
Jan 26 22:27:01 darkstar kernel: Loaded 4342 symbols from /boot/System.map.
Jan 26 22:27:01 darkstar kernel: Symbols match kernel version.
Jan 26 22:37:04 darkstar auditd[88]: open("/etc/passwd","r")=4
Jan 26 22:37:04 darkstar kernel: NET3: Unix domain sockets 0.13 for Linux NET3.035.
Jan 26 22:37:04 darkstar kernel: VFS: Diskquotas version dquot_5.6.0 initialized
Jan 26 22:37:04 darkstar auditd[88]: read(4,1024)=573
Jan 26 20:37:04 darkstar auditd[88]: read(4,1024)=-1
Jan 26 20:37:04 darkstar auditd[89]: ptrace(PTRACE_ATTACH,88)=0
Jan 26 20:37:04 darkstar auditd[88]: close(4)=0
...

How it works

• The monitored machines collect
 events:

• We look for signatures
that identify the attack:

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.(none)Orchids threads:

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.(none)Orchids threads:

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

Detecting the Attack

Flow of events:
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Initially, ORCHIDS has no active thread.Orchids threads:

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=57, euid=500, tgt=58

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

ORCHIDS

Jean
Goubault-
Larrecq,

Julien Olivain

Introduction

Issues

Running
ORCHIDS
Demo
Under the Hood

Beyond

The Industrial
View

Conclusion

Misc
Architecture
Way Beyond

The Attack Signature

We can count on the system logging important events.
Here we count on the (previously, snare) auditd kernel

module.
We may also interface to the syslog facility.

ORCHIDS will now try to find patterns among these
logged events:

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

pid=100, euid=500, tgt=101

How it works

vendredi 11 juillet 14

Related work
• P-Best [Lindqvist-Porras 1999]

• Statl [Eckmann-Vigna-Kemmerer 2000]

• Chronicles [e.g., Morin-Debar 2003]

• Lambda [Cuppens-Miege 2002]

• Sutekh [Pouzol-Ducassé 2002]

• Blare [George-VietTriemTong-Mé 2009]

• RV-Monitor [Rosu et al. 2008, 09, 12, 14]

• ... and probably many others
vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Semantics, and detection algorithms

• Semantics: what should Orchids detect?

• Algorithm: how should I detect it?
(This is what I showed you.)

• Semantics dictates the algorithm.

• ... somehow opposite to the average
coding attitude

• we like to think algorithmically

• we are eager to code
http://www.sadgrin.com/wp-content/uploads/2013/03/geek-300x300.jpg

vendredi 11 juillet 14

http://www.sadgrin.com/wp-content/uploads/2013/03/geek-300x300.jpg
http://www.sadgrin.com/wp-content/uploads/2013/03/geek-300x300.jpg

Semantics, and detection algorithms

• Semantics: what should Orchids detect?

• Algorithm: how should I detect it?
(This is what I showed you.)

• Semantics dictates the algorithm.

• ... somehow opposite to the average
coding attitude

• we like to think algorithmically

• we are eager to code
http://www.sadgrin.com/wp-content/uploads/2013/03/geek-300x300.jpg

vendredi 11 juillet 14

http://www.sadgrin.com/wp-content/uploads/2013/03/geek-300x300.jpg
http://www.sadgrin.com/wp-content/uploads/2013/03/geek-300x300.jpg

Semantics, 1

• ORCHIDS looks for subsequences of events («runs»)

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

¡(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

A
 ptrace(ATTACH, ...)
 B
 A
 exec(...)
 ptrace(SYSCALL, ...)
 A

A
 B
 ptrace(GETREGS, ...)
 B
 B
 A
 ptrace(POKETEXT, ...)

A
 ptrace(DETACH, ...)
 B
 A

vendredi 11 juillet 14

Semantics, 1

• ORCHIDS looks for subsequences of events («runs»)

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

¡(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt()
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

))

A
 ptrace(ATTACH, ...)
 B
 A
 exec(...)
 ptrace(SYSCALL, ...)
 A

A
 B
 ptrace(GETREGS, ...)
 B
 B
 A
 ptrace(POKETEXT, ...)

A
 ptrace(DETACH, ...)
 B
 A

vendredi 11 juillet 14

Semantics, 2: «shortest runs»

• ORCHIDS looks for subsequences of events

• In this (simple) example, many possible runs
(even by fixing the start event)

1 32
AA

A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Here is one:

vendredi 11 juillet 14

1 32
AA

A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Another one:

Semantics, 2: «shortest runs»

• ORCHIDS looks for subsequences of events

• In this (simple) example, many possible runs
(even by fixing the start event)

vendredi 11 juillet 14

1 32
AA

A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Yet another:

Semantics, 2: «shortest runs»

• ORCHIDS looks for subsequences of events

• In this (simple) example, many possible runs
(even by fixing the start event)

vendredi 11 juillet 14

1 32
AA

A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We would like to be warned
at the earliest possible time

Semantics, 2: «shortest runs»

• ORCHIDS looks for subsequences of events

• In this (simple) example, many possible runs
(even by fixing the start event)

vendredi 11 juillet 14

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
(Here, .)

1 32
AA

A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

A run is minimal iff
 is minimal (w. fixed) and ...

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 2

Semantics, 2: «shortest runs»

We would like to be warned
at the earliest possible time

vendredi 11 juillet 14

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
Another example:

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD
1 2 3 8

Semantics, 2: «shortest runs»

A run is minimal iff
 is minimal (w. fixed) and ...

among all matching subsequences starting at a given event. T
< . . . < ik

iff
For any subflows i1

We would like to be warned
at the earliest possible time

vendredi 11 juillet 14

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
This one, stops at minimal (=8):

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD
1 4 5 8

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Semantics, 2: «shortest runs»

A run is minimal iff
 is minimal (w. fixed) and ...

among all matching subsequences starting at a given event. T
< . . . < ik

iff
For any subflows i1

We would like to be warned
at the earliest possible time

vendredi 11 juillet 14

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
And this one too:

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD
1 4 7 8

Semantics, 2: «shortest runs»

A run is minimal iff
 is minimal (w. fixed) and ...

among all matching subsequences starting at a given event. T
< . . . < ik

iff
For any subflows i1

We would like to be warned
at the earliest possible time

vendredi 11 juillet 14

1 2 3 4 5 6 7 8

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
And again this one!

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD

Semantics, 2: «shortest runs»

A run is minimal iff
 is minimal (w. fixed) and ...

among all matching subsequences starting at a given event. T
< . . . < ik

iff
For any subflows i1

We would like to be warned
at the earliest possible time

vendredi 11 juillet 14

The lexicographic ordering

1 8
1 2 3 8
1 2 5 8
1 2 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 4 5 6 7 8
1 2 3 4 5 6 7 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

vendredi 11 juillet 14

The lexicographic ordering

1 8
1 2 3 8
1 2 5 8
1 2 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 4 5 6 7 8
1 2 3 4 5 6 7 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

vendredi 11 juillet 14

1 8
1 2 3 8
1 2 5 8
1 2 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 4 5 6 7 8
1 2 3 4 5 6 7 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

1 2 3 8
1 2 5 8
1 2 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 4 5 6 7 8
1 2 3 4 5 6 7 8
1 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

1 2 3 8
1 2 5 8
1 2 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 4 5 6 7 8
1 2 3 4 5 6 7 8
1 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

1 2 3 8
1 2 5 8
1 2 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 2 3 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 4 5 6 7 8
1 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

1 2 3 8
1 2 5 8
1 2 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 2 3 4 5 6 7 8
1 4 5 8
1 4 7 8
1 4 5 6 7 8
1 6 7 8
1 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

1 2 3 8
1 2 5 8
1 2 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 6 7 8
1 2 3 4 5 6 7 8
1 4 5 8
1 4 7 8
1 4 5 6 7 8
1 6 7 8
1 8

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 5 8
1 2 7 8
1 2 5 6 7 8
1 2 3 4 5 6 7 8
1 4 5 8
1 4 7 8
1 4 5 6 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 4 5 6 7 8
1 2 5 8
1 2 7 8
1 2 5 6 7 8
1 4 5 8
1 4 7 8
1 4 5 6 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 4 5 6 7 8
1 2 5 8
1 2 5 6 7 8
1 2 7 8
1 4 5 8
1 4 7 8
1 4 5 6 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 4 5 6 7 8
1 2 5 8
1 2 5 6 7 8
1 2 7 8
1 4 5 8
1 4 5 6 7 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 4 5 6 7 8
1 2 5 8
1 2 5 6 7 8
1 2 7 8
1 4 5 8
1 4 5 6 7 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 8
1 2 3 6 7 8
1 2 3 4 5 6 7 8
1 2 5 8
1 2 5 6 7 8
1 2 7 8
1 4 5 8
1 4 5 6 7 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 4 5 6 7 8
1 2 3 8
1 2 3 6 7 8
1 2 5 8
1 2 5 6 7 8
1 2 7 8
1 4 5 8
1 4 5 6 7 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 4 5 6 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 8
1 2 5 6 7 8
1 2 7 8
1 4 5 8
1 4 5 6 7 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 4 5 6 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 8
1 4 5 6 7 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 4 5 6 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 4 5 6 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 5 6 7 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 8
1 2 3 4 5 6 7 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

The largest

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4

3

2
A B

CD

1 2 3 4 5 6 7 8
1 2 3 4 5 8
1 2 3 4 7 8
1 2 3 6 7 8
1 2 3 8
1 2 5 6 7 8
1 2 5 8
1 2 7 8
1 4 5 6 7 8
1 4 5 8
1 4 7 8
1 6 7 8
1 8

The smallest The largest

... and most informative

• ... or dictionary order
but take indices instead of letters...

• and let’s sort in increasing order

The lexicographic ordering

vendredi 11 juillet 14

1 2 3 4 5 6 7 8

Semantics, 2: «shortest runs»

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD

The minimal run:

A run is minimal iff
 is minimal (w. fixed) and ...

among all matching subsequences starting at a given event. T
< . . . < ik

iff
For any subflows i1

We would like to be warned
at the earliest possible time

vendredi 11 juillet 14

1 2 3 4 5 6 7 8

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD

The minimal run:

A run is minimal iff
 is minimal (w. fixed) and ...

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

We would like to be warned
at the earliest possible time

Semantics, 2: «shortest runs»

vendredi 11 juillet 14

1 2 3 4 5 6 7 8

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices

A C D C D C D B A A C B D C A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

1 4

3

2
A B

CD

The minimal run:

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

We would like to be warned
at the earliest possible time

A run is minimal iff
 is minimal (w. fixed) and
the sequence
is lexicographically minimal

Semantics, 2: «shortest runs»

vendredi 11 juillet 14

Semantics => Theorems

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
It is minimal iff is minimal (w. fixed) and
 is lexicographically
 smallest.

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Proposition (optimality):
If there is a run starting at ,
then there is a unique one that is minimal.

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Proof: the associated ordering on runs is
 — well-founded (whence existence)
 — total (whence uniqueness)

vendredi 11 juillet 14

Semantics => Theorems

• ORCHIDS looks for subsequences of events

• A run is an increasing sequence of indices
It is minimal iff is minimal (w. fixed) and
 is lexicographically
 smallest.

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Proposition (optimality):
If there is a run starting at ,
then there is a unique one that is minimal.

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Proof: the associated ordering on runs is
 — well-founded (whence existence)
 — total (whence uniqueness)

vendredi 11 juillet 14

Algorithms

• The ORCHIDS algorithm never sorts anything

• Instead, it keeps the thread queue sorted at all times

• ... for a subtle ordering: at event #n,

if and only if

[i1, i2, · · · , ik] n [j1, j2, · · · , j`]

[i1, i2, · · · , ik, n] lexicographically smaller than [j1, j2, · · · , j`, n]

i1 = j1 and

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 3 1 2 – 1 – 3

new_queue

Motto:
keep

queues
sorted

thread

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 3 1 2 – 1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 31 2 – 1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 31 2 – 1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 3 –

1 2 – 1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 –1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 –

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 2 –1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – –

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – –

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

1 – 3

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – – 1 – 3 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – – 1 – 3 4 1 – 3 –

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

new_queue

Motto:
keep

queues
sorted

thread

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – – 1 – 3 4 1 – 3 – 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

new_queue

Motto:
keep

queues
sorted

Read event #4

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – – 1 – 3 4 1 – 3 – 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

old_queue

Algorithms

new_queue

Motto:
keep

queues
sorted

Read event #5

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – – 1 – 3 4 1 – 3 – 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong.

old_queue

new_queue

1 2 3 4 1 2 3 – 1 2 – 4 1 2 – – 1 – 3 4 1 – 3 – 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong:

• Imagine we now have two outgoing transitions at event 4

old_queue

new_queue

1 – 3 thread

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong:

• Imagine we now have two outgoing transitions at event 4

old_queue

new_queue

1 – 3thread

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong:

• Imagine we now have two outgoing transitions at event 4

old_queue

new_queue

1 – 3thread

1 – 3 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong:

• Imagine we now have two outgoing transitions at event 4

old_queue

new_queue

1 – 3thread

1 – 3 4 1 – 3 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong:

• Imagine we now have two outgoing transitions at event 4

old_queue

new_queue 1 – 3 –

thread

1 – 3 4 1 – 3 4

vendredi 11 juillet 14

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 while (thread = dequeue (old_queue)) {
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (new_queue, t);
 }
 enqueue (new_queue, thread);
 }
 for each rule r do enqueue (new_queue, r->init);
 old_queue = new_queue;

Algorithms (?)

• Several optimizations, avoiding exponential blow-up in most cases

• Main problem: the latter algorithm is wrong:

• Imagine we now have two outgoing transitions at event 4
the first one will raise an alert at 1 – 3 4 – 6
the second one will raise an alert at 1 – 3 4 5 6

old_queue

new_queue 1 – 3 –

thread

1 – 3 4 1 – 3 4

vendredi 11 juillet 14

Fixing the bug

• Instead of lists of threads, encode queues as
lists of blobs,
where a blob is an unsorted list of threads with the same sequence of events

• Practical implementation: use fake thread «;»

1 – 3 –1 – 3 4 1 – 3 4

unsorted

1 – 3 –1 – 3 4 1 – 3 4

unsorted

;

vendredi 11 juillet 14

Algorithms: the right one

orchids_main_loop:
 e = next_event();
 new_queue = empty();
 unsorted = empty(); next = empty();
 while (thread = dequeue (old_queue)) {
 if (thread == «;») bump() else
 for each outgoing transition [thread -g,a-> t] do
 if (eval_guard (g, e)) {
 execute_action (a);
 enqueue (unsorted, t);
 }
 enqueue (next, thread);
 }
 bump();
 for each rule r do
 enqueue (new_queue, r->init);
 bump();
 old_queue = new_queue;

/* Optimization: don’t enqueue «;» if last element on queue is «;» already. */

bump:
 enqueue_all (new_queue, unsorted);
 unsorted = empty();
 enqueue (new_queue, «;»);
 enqueue_all (new_queue, next);
 next = empty();
 enqueue (new_queue, «;»);

vendredi 11 juillet 14

Algorithms

• ORCHIDS looks for subsequences of events: runs

• Our algorithm finds these minimal runs by an efficient algorithm
 ... which, notably, never sorts anything

Theorem (soundness):
The ORCHIDS algorithm computes exactly the minimal runs.

2 3 4 first, then 1 2 3 . Going on with 1 2 , we output 1 2 4, then 1 2 . Eventually,
this algorithm will output the partial runs 1 2 3 4, 1 2 3 , 1 2 4, 1 2 , 1 3 4, and 1 3
. We let the reader check that this is ≤4-sorted.
However, there is a bug, which occurs whenever two partial runs are generated that

induce the same subflow. Imagine for example that we must generate two partial runs
with subflow 1 3 4, on reading event 4. The above algorithm lists them in an arbitrary
order. However, it may be that the first one will eventually lead to a complete run such
as 1 3 4 6, and that the second one will lead to another complete run such as 1 3 4 5
6. . . and 1 3 4 6, the first one, is then not shortest.

ORCHIDS uses a corrected algorithm, where partial runs are first grouped in blobs,
i.e., non-empty sets of threads with the same subflow. Each blob therefore has a unique
associated subflow. Then, blobs are ≤i-sorted, in the sense that the associated subflows
are ≤i-sorted. In other words, a list of blobs B1, B2, . . . , Bm is ≤i-sorted if and only
if Dj ≤i Dk implies j ≤ k, for all 1 ≤ j, k ≤ m, writing Dj for Bj’s subflow.

More precisely, at position i, ORCHIDS produces a ≤i-sorted list B1, B2, . . . , Bm.
On reading event number i+1, ORCHIDS produces the queue described in Proposition 1
below, obtained by listing all partial runs starting at i + 1 in a unique blob B′

0, and
dealing with partial runs from Bj by first listing all non-trivial extensions of partial
runs from Bj , in a new blobB′

2j−1 that will precede the blob B′

2j of the (unique) trivial
extension. In other words, the corrected algorithm works as above, except it needs to
consider blobs instead of single partial runs.

Proposition 1. Let B1, B2, . . . , Bm be a ≤i-sorted list of blobs, and assume all the
subflows of each Bj , 1 ≤ j ≤ m, are contained in {1, . . . , i}. Let B′

0 be the set of all
partial runs starting at i + 1, B′

2j−1 be the set of all non-trivial extensions to partial
runs in Bj , B′

2j be the set of all trivial extensions to partial runs in Bj , 1 ≤ j ≤ m.
Then the queue obtained from B′

0, B
′

1, B
′

2, . . . , B
′

2m−1, B
′

2m by eliminating those B′

js
that are empty is ≤i+1-sorted, and their subflows are contained in {1, . . . , i, i + 1}.

Proof. Assume that B′

0, B
′

1, B
′

2, . . . , B
′

2m−1, B
′

2m is not ≤i+1-sorted. Let D′

j be the
subflow of B′

j , for all j, and Dj be the subflow of Bj . Then there are j′, k′ with 0 ≤
k′ < j′ ≤ 2m and D′

j′ ≤i+1 D′

k′ . Note that k′ ̸= 0, since the birthdate of any partial
run in B′

0 is i + 1, which is different from all other birthdates. Write k′ = 2k − δk

and j′ = 2j − δj , where δk, δj are 0 or 1, and k ≤ j. If k = j, then k′ < j′ implies
δk = 1, δj = 0, so that D′

k′ = Dk ∪ {i + 1} (the partial runs of B′

k′ = B′

2k−1 are
non-trivial extensions of those of Bk), and D′

j′ = Dk (those of B′

j′ = B′

2j = B′

2k are
trivial extensions). But Dk ∪ {i + 1} <i+1 Dk, soD′

k′ <i+1 D′

j′ , contradiction.
So k < j. Then Dk′ equals Dk, possibly with i + 1 added, and Dj′ equals Dj ,

possibly with i + 1 added. Since B1, B2, . . . , Bm is ≤i-sorted, it is impossible that
Dj ≤i Dk, i.e., that Dj ∪ {i + 1} ≤lex Dk ∪ {i + 1}. Since ≤lex is a total ordering,
we must haveDk ∪ {i + 1} <lex Dj ∪ {i + 1}. Write the elements of Dk as i1 < i2 <
. . . < ip (with ip < i + 1), those of Dj as j1 < j2 < . . . < jq (with jq < i + 1, and
j1 = i1). Let ip+1 = i + 1, jq+1 = i + 1. Since Dk ∪ {i + 1} <lex Dj ∪ {i + 1},
for some ℓ between 1 and min(p + 1, q + 1), i1 = j1, i2 = j2, . . . , iℓ−1 = jℓ−1, and
iℓ < jℓ. Now ℓ ̸= p + 1, else i + 1 = iℓ < jℓ ≤ jq+1 = i + 1. So ℓ ≤ p. But then
Dk′ ∪ {i + 2}, which is composed of i1, i2, . . . , ip (optionally ip+1 = i + 1) and i + 2,
is lexicographically smaller than Dj′ ∪ {i + 2}, which is composed of j1, j2, . . . , jq

(optionally jq+1 = i + 1) and i + 2. That is, Dk′ <i+1 Dj′ , contradiction. ⊓#

While we have equated threads with partial runs until now, threads are in fact pairs of a
partial run R and an outgoing transition (qk, p, g, qk+1). One may think of a thread as
waiting on a particular transition to fire. In general, there may be several threads with
the same partial run, waiting on different transitions in the same blob. From now on,
call thread queue at position i a ≤i-sorted list of blobs, composed of such threads. At
the moment, this organization of blobs in threads rather than in partial runs only leads
to a minor modification in the core algorithm. This will become important in Section 5.

Additionally, ORCHIDS maintains a set Kill of birthdates of partial runs that have
reached their final state, to kill non-shortest runs. On reading event i + 1, ORCHIDS
first resets Kill to ∅. ORCHIDS runs through the threads R in B1, B2, . . . , Bm as de-
scribed in Proposition 1, with two modifications. First, whenever a thread with run R′

is produced in one of the new blobs B′

j′ , 0 ≤ j′ ≤ 2m, that reaches a final state,
ORCHIDS adds the birthdate i1 of R′ to Kill. This is a shortest complete run. Sec-
ond, ORCHIDS kills all other threads with the same birthdate i1 by simply ignoring the
threads in B1, B2, . . . , Bm whose birthdate are in Kill when their turn comes.

ORCHIDS also ignores a number of other threads, see Section 5. Note that the actual
thread queue, consisting of subsets of the blobs of Proposition 1, will also remain ≤i-
sorted at each event number i, guaranteeing that the unique complete run that will reach
a final state (with given birthdate and signature) indeed has a shortest subflow.

Finally, we didn’t say what ORCHIDS did on reaching a final state. It might seem
obvious that this would be the right point to emit a report, warning the security ad-
ministrator that an attack has just successfully completed, and to take active counter-
measures. This is in fact wrong, and confuses two roles for final states. One of these
roles is recognizing that enough information has been collected to conclude that some
attack was indeed under way. The other role is to terminate ORCHIDS monitoring, and
kill the corresponding threads. These two roles are distinct. The actual signature we use
for ptrace has more states. State 7 is not final, and is the state at which ORCHIDS
takes corrective actions—here, ORCHIDS will emit an attack report, store it into a se-
cured database of successful fatal attacks, kill the offending attacking process (whose
pid is in Pid) and all its descendants, securely close the attacker’s account (whose
id is in Euid) through an SSH connection to the attacked machine. (We assume that
ORCHIDS runs on a different, dedicated host, for obvious security reasons.) However,
killing subprocesses and closing user accounts takes some time, in particular if this is
done through a remote SSH connection, so the shellcode has some time to do harm.
The actual ptrace signature we use in ORCHIDS has additional states following 7 ,
whose purpose is to trace and record all subsequent events done by the shellcode. This
allows later, precise forensic analysis of the attack, and is crucial both for repairing the
attacked host and for acquiring information on emerging viruses and worms.

5 Cuts, Green Cuts, Red Cuts

By cut, we mean any optimization or construction allowing one to kill threads. Cuts are
important to be able to bound the number of active threads at any given position in the

Proof: slightly more complex
(omitted).

vendredi 11 juillet 14

Algorithms

• ORCHIDS looks for subsequences of events: runs

• Our algorithm finds these minimal runs by an efficient algorithm
 ... which, notably, never sorts anything

Theorem (soundness):
The ORCHIDS algorithm computes exactly the minimal runs.

2 3 4 first, then 1 2 3 . Going on with 1 2 , we output 1 2 4, then 1 2 . Eventually,
this algorithm will output the partial runs 1 2 3 4, 1 2 3 , 1 2 4, 1 2 , 1 3 4, and 1 3
. We let the reader check that this is ≤4-sorted.
However, there is a bug, which occurs whenever two partial runs are generated that

induce the same subflow. Imagine for example that we must generate two partial runs
with subflow 1 3 4, on reading event 4. The above algorithm lists them in an arbitrary
order. However, it may be that the first one will eventually lead to a complete run such
as 1 3 4 6, and that the second one will lead to another complete run such as 1 3 4 5
6. . . and 1 3 4 6, the first one, is then not shortest.

ORCHIDS uses a corrected algorithm, where partial runs are first grouped in blobs,
i.e., non-empty sets of threads with the same subflow. Each blob therefore has a unique
associated subflow. Then, blobs are ≤i-sorted, in the sense that the associated subflows
are ≤i-sorted. In other words, a list of blobs B1, B2, . . . , Bm is ≤i-sorted if and only
if Dj ≤i Dk implies j ≤ k, for all 1 ≤ j, k ≤ m, writing Dj for Bj’s subflow.

More precisely, at position i, ORCHIDS produces a ≤i-sorted list B1, B2, . . . , Bm.
On reading event number i+1, ORCHIDS produces the queue described in Proposition 1
below, obtained by listing all partial runs starting at i + 1 in a unique blob B′

0, and
dealing with partial runs from Bj by first listing all non-trivial extensions of partial
runs from Bj , in a new blobB′

2j−1 that will precede the blob B′

2j of the (unique) trivial
extension. In other words, the corrected algorithm works as above, except it needs to
consider blobs instead of single partial runs.

Proposition 1. Let B1, B2, . . . , Bm be a ≤i-sorted list of blobs, and assume all the
subflows of each Bj , 1 ≤ j ≤ m, are contained in {1, . . . , i}. Let B′

0 be the set of all
partial runs starting at i + 1, B′

2j−1 be the set of all non-trivial extensions to partial
runs in Bj , B′

2j be the set of all trivial extensions to partial runs in Bj , 1 ≤ j ≤ m.
Then the queue obtained from B′

0, B
′

1, B
′

2, . . . , B
′

2m−1, B
′

2m by eliminating those B′

js
that are empty is ≤i+1-sorted, and their subflows are contained in {1, . . . , i, i + 1}.

Proof. Assume that B′

0, B
′

1, B
′

2, . . . , B
′

2m−1, B
′

2m is not ≤i+1-sorted. Let D′

j be the
subflow of B′

j , for all j, and Dj be the subflow of Bj . Then there are j′, k′ with 0 ≤
k′ < j′ ≤ 2m and D′

j′ ≤i+1 D′

k′ . Note that k′ ̸= 0, since the birthdate of any partial
run in B′

0 is i + 1, which is different from all other birthdates. Write k′ = 2k − δk

and j′ = 2j − δj , where δk, δj are 0 or 1, and k ≤ j. If k = j, then k′ < j′ implies
δk = 1, δj = 0, so that D′

k′ = Dk ∪ {i + 1} (the partial runs of B′

k′ = B′

2k−1 are
non-trivial extensions of those of Bk), and D′

j′ = Dk (those of B′

j′ = B′

2j = B′

2k are
trivial extensions). But Dk ∪ {i + 1} <i+1 Dk, soD′

k′ <i+1 D′

j′ , contradiction.
So k < j. Then Dk′ equals Dk, possibly with i + 1 added, and Dj′ equals Dj ,

possibly with i + 1 added. Since B1, B2, . . . , Bm is ≤i-sorted, it is impossible that
Dj ≤i Dk, i.e., that Dj ∪ {i + 1} ≤lex Dk ∪ {i + 1}. Since ≤lex is a total ordering,
we must haveDk ∪ {i + 1} <lex Dj ∪ {i + 1}. Write the elements of Dk as i1 < i2 <
. . . < ip (with ip < i + 1), those of Dj as j1 < j2 < . . . < jq (with jq < i + 1, and
j1 = i1). Let ip+1 = i + 1, jq+1 = i + 1. Since Dk ∪ {i + 1} <lex Dj ∪ {i + 1},
for some ℓ between 1 and min(p + 1, q + 1), i1 = j1, i2 = j2, . . . , iℓ−1 = jℓ−1, and
iℓ < jℓ. Now ℓ ̸= p + 1, else i + 1 = iℓ < jℓ ≤ jq+1 = i + 1. So ℓ ≤ p. But then
Dk′ ∪ {i + 2}, which is composed of i1, i2, . . . , ip (optionally ip+1 = i + 1) and i + 2,
is lexicographically smaller than Dj′ ∪ {i + 2}, which is composed of j1, j2, . . . , jq

(optionally jq+1 = i + 1) and i + 2. That is, Dk′ <i+1 Dj′ , contradiction. ⊓#

While we have equated threads with partial runs until now, threads are in fact pairs of a
partial run R and an outgoing transition (qk, p, g, qk+1). One may think of a thread as
waiting on a particular transition to fire. In general, there may be several threads with
the same partial run, waiting on different transitions in the same blob. From now on,
call thread queue at position i a ≤i-sorted list of blobs, composed of such threads. At
the moment, this organization of blobs in threads rather than in partial runs only leads
to a minor modification in the core algorithm. This will become important in Section 5.

Additionally, ORCHIDS maintains a set Kill of birthdates of partial runs that have
reached their final state, to kill non-shortest runs. On reading event i + 1, ORCHIDS
first resets Kill to ∅. ORCHIDS runs through the threads R in B1, B2, . . . , Bm as de-
scribed in Proposition 1, with two modifications. First, whenever a thread with run R′

is produced in one of the new blobs B′

j′ , 0 ≤ j′ ≤ 2m, that reaches a final state,
ORCHIDS adds the birthdate i1 of R′ to Kill. This is a shortest complete run. Sec-
ond, ORCHIDS kills all other threads with the same birthdate i1 by simply ignoring the
threads in B1, B2, . . . , Bm whose birthdate are in Kill when their turn comes.

ORCHIDS also ignores a number of other threads, see Section 5. Note that the actual
thread queue, consisting of subsets of the blobs of Proposition 1, will also remain ≤i-
sorted at each event number i, guaranteeing that the unique complete run that will reach
a final state (with given birthdate and signature) indeed has a shortest subflow.

Finally, we didn’t say what ORCHIDS did on reaching a final state. It might seem
obvious that this would be the right point to emit a report, warning the security ad-
ministrator that an attack has just successfully completed, and to take active counter-
measures. This is in fact wrong, and confuses two roles for final states. One of these
roles is recognizing that enough information has been collected to conclude that some
attack was indeed under way. The other role is to terminate ORCHIDS monitoring, and
kill the corresponding threads. These two roles are distinct. The actual signature we use
for ptrace has more states. State 7 is not final, and is the state at which ORCHIDS
takes corrective actions—here, ORCHIDS will emit an attack report, store it into a se-
cured database of successful fatal attacks, kill the offending attacking process (whose
pid is in Pid) and all its descendants, securely close the attacker’s account (whose
id is in Euid) through an SSH connection to the attacked machine. (We assume that
ORCHIDS runs on a different, dedicated host, for obvious security reasons.) However,
killing subprocesses and closing user accounts takes some time, in particular if this is
done through a remote SSH connection, so the shellcode has some time to do harm.
The actual ptrace signature we use in ORCHIDS has additional states following 7 ,
whose purpose is to trace and record all subsequent events done by the shellcode. This
allows later, precise forensic analysis of the attack, and is crucial both for repairing the
attacked host and for acquiring information on emerging viruses and worms.

5 Cuts, Green Cuts, Red Cuts

By cut, we mean any optimization or construction allowing one to kill threads. Cuts are
important to be able to bound the number of active threads at any given position in the

Proof: slightly more complex
(omitted).

vendredi 11 juillet 14

Algorithms

• ORCHIDS looks for subsequences of events: runs

• Our algorithm finds these minimal runs by an efficient algorithm
 ... which, notably, never sorts anything

Corollary (soundness and optimality):
1. ORCHIDS emits an alert at only if some run starts there
2. If there is a run starting at ,
 ORCHIDS emits only one alert, witnessing the minimal run.

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Each transition in a signature may be additionally labeled with a guard, which is an
expression over the variables in V denoting a Boolean value. The actual syntax of guards
is unimportant here. Letting G be the set of guards, we shall only assume that one may
compute the finite set fv(g) of free variables in the guard g, and that we may evaluate a
guard g in an environment σ to a Boolean value !g"σ, as soon as fv(g) ⊆ dom σ.

Signatures Σ are automata (Q, I, T, ∆), where Q is a finite set of states, I ⊆ Q
is the subset of initial states, T ⊆ Q is the set of final states, and ∆ ⊆ Q × (T (V) #
{ϵ})×G×Q is the transition relation. Any transition of the form (q0, ϵ, g, q1) is called
an ϵ-transition. We assume that no ϵ-transition goes out of the initial state, i.e., that there
is no transition of the form (q0, ϵ, g, q1) with q0 ∈ I .

An event flow t• is any finite or infinite sequence t1t2 . . . ti . . . of events, i.e., of
ground terms in T . We are interested in finding specific subsequences of events with
indices i1 < i2 < . . . < ik (k ≥ 1): these subsequences are uniquely determined by the
sets {i1, i2, . . . , ik}, which we call subflows. A partial run of an event flow t• against a
signature Σ = (Q, I, T, ∆) is a sequence q0, σ0

i1→q1, σ1
i2→ . . .

ik→qk, σk, where k ≥ 1,
q0, q1 . . . , qk are states inQ, q0 ∈ I , σ0 is the empty substitution, and there is an integer
ik+1 such that for all j, 1 ≤ j ≤ k, either there is a transition (qj−1, ϵ, g, qj) ∈ ∆ with
!g"σj−1 true and ij = ij+1 (go through the ϵ-transition, do not move in the event flow),
or there is a transition (qj−1, p, g, qj) ∈ ∆ with p ̸= ϵ, σj−1 ⊢ p ▹ tij

⇒ σj , with !g"σj

true, and ij < ij+1 (go through the transition, acquiring new values for variables, and
proceed to some later point in the event flow). The subflow of such a partial run is the
set of indices i1, i2, . . . , ik, with duplicates removed. We say that i1 is its birthdate. A
complete run is a partial run such that, additionally, qk ∈ F .

ORCHIDS is in fact based on a more complex, and more expressive, language of sig-
natures, with mutable variables, external system calls, and an embedded Prolog inter-
preter to maintain various databases: black lists, attacks that have succeeded in the past
and that may be prerequisites to some others, neighboring relations between hosts in
networks, equivalences between host names and between other services, and alert cor-
relation information as in the M2D2 model [5]. However, the above simpler automata
are enough to convey the essential ideas.

3.1 Shortest Runs

It is important to note that there is no unique complete run of a given event flow against
a given signature in general, as we have seen above on the example of the ptrace
attack: even the corresponding subflows are not unique.

An intrusion detection system cannot just report the existence of a matching subse-
quence (an attack): it should also collect, report enough information about the attack,
and use it to react appropriately. Complete runs are enough information. On the other
hand, it cannot report all matching complete runs either. This would flood the secu-
rity administrator with too many alerts, prompting him to turn the intrusion detection
system off, or to ignore its warnings. Instead, ORCHIDS reports a shortest run [13]
among all matching subsequences starting at a given event. The definition is as follows.
For any subflows i1 < i2 < . . . < ik and j1 < j2 < . . . < jℓ (k, ℓ ≥ 1), we let
(i1, i2, . . . , ik) ≼ (j1, j2, . . . , jℓ) iff i1 = j1 (the subflows have the same birthdate),

Guarantees:
1. no false positive
2. absolute minimum «information glut» (at most 1 alert)
 and no false negative (at least 1 alert)

 (in our model; the real world has its own perks, too)

vendredi 11 juillet 14

Semantics, and optimizations

The «shortest runs» semantics also allows us to:

• kill threads which provably
 will never find a run

• kill threads which may ultimately find runs,
 which provably cannot be minimal

• ... by abstract interpretation techniques

• allowing for increased (time and space) efficiency

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

• ORCHIDS is not just a HIPS

• ORCHIDS does anomaly, too, not just misuse detection

• A challenging attack to detect:
 replaces encrypted, random keys
 by its own payload

How do we detect illicit changes in encrypted traffic?

vendredi 11 juillet 14

Compile attack: apache-openssl-exploit

Victim:

Remote
attacker:

The mod_ssl remote-to-local attack (McDonald 2003)

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

Launch attack: apache-openssl-exploit

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

Rien vu ici!

Success! The attacker connects to the victim machine.

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Nothing to be
seen here!

vendredi 11 juillet 14

Check that it works...

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

Works. Only root appears to be here (I am invisible...)

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Works. Only root appears to be here (I am invisible...)

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Works. Only root appears to be here (I am invisible...)

vendredi 11 juillet 14

Next step: privilege escalation.

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Next step: privilege escalation.

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Next step: privilege escalation.
Let’s use the do_brk attack for a change (Morton, Starzetz 2003)

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Next step: privilege escalation.
Let’s use the do_brk attack for a change (Morton, Starzetz 2003)

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Next step: privilege escalation.
Let’s use the do_brk attack for a change (Morton, Starzetz 2003)

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Next step: privilege escalation.
Let’s use the do_brk attack for a change (Morton, Starzetz 2003)

vendredi 11 juillet 14

Here we are at last. Launch attack.

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

Works. I should have root privileges now.

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

Works. I have root privileges.

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

Check my tracks...

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Check my tracks...

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Check my tracks...

vendredi 11 juillet 14

Eh! Mais c’est la première attaque, "remoteïtoïlocal"!

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Hey, that is our mod_ssl attack!

Check my tracks... indeed mod_ssl attack causes SSL handshake to fail...

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

Remote
attacker:

Victim:

Check my tracks... OK, erase all compromising data.

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

• Normal SSL v2 handshake:

• Black zones are:

• random keys/data

• encrypted text

• Mod_ssl attack causes
a buffer overflow on key-arg,
allowing attacker to transmit
useful info over the network,
by abusing free().

NC

Ks
{K }m

Km

Encrypted
traffic

{N }C

ClientFinished

ServerVerify

ServerFinished

{

ClientHello

ServerHello

ClientMasterKey

client−cipher−list

conn−idcertificate cipher−list

key−arg

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

• Hijacked SSL v2 handshake:

• Black zones are:

• random keys/data

• encrypted text

• Note that key-arg
is now «less random-looking».

• Subsequent traffic no longer looks
random either.

Hijacked
traffic {

NC

Ks
{K }m

ClientHello

ServerHello

ClientMasterKey

client−cipher−list

conn−idcertificate cipher−list

key−arg

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

• Hijacked SSL v2 handshake:

• Black zones are:

• random keys/data

• encrypted text

• Note that key-arg
is now «less random-looking».

• Subsequent traffic no longer looks
random either.

Hijacked
traffic {

NC

Ks
{K }m

ClientHello

ServerHello

ClientMasterKey

client−cipher−list

conn−idcertificate cipher−list

key−arg

vendredi 11 juillet 14

The mod_ssl remote-to-local attack (McDonald 2003)

• Hijacked SSL v2 handshake:

• Black zones are:

• random keys/data

• encrypted text

• Note that key-arg
is now «less random-looking».

• Subsequent traffic no longer looks
random either.

Hijacked
traffic {

NC

Ks
{K }m

ClientHello

ServerHello

ClientMasterKey

client−cipher−list

conn−idcertificate cipher−list

key−arg

NetEntropy: a tool to compute
statistical entropy on-line
and compare them against
a profile of normal behavior

vendredi 11 juillet 14

Related work

• Shannon (1948): theory of communication
«random-looking» = entropy H should be about 8 bits/byte in the limit
 ... but we should react as soon as we can (fewer bytes)

• Entropy computation part of:
packer detector PEiD, file system forensic analysis tool WinHex, etc.

• Packet type classifier tool PAYL [Wang, Cretu, Stolfo 2005]
uses Mahalanobis distance clustering

• Our problem is simpler: is payload random-looking?

vendredi 11 juillet 14

On the Efficiency of Mathematics in Intrusion
Detection: the NetEntropy Case

Jean Goubault-Larrecq1 Julien Olivain1,2

1 ENS Cachan goubault@lsv.ens-cachan.fr

2 INRIA olivain@lsv.ens-cachan.fr

Abstract. NetEntropy is a plugin to the Orchids intrusion detection
tool that is originally meant to detect some subtle attacks on implemen-
tations of cryptographic protocols such as SSL/TLS. NetEntropy com-
pares the sample entropy of a data stream to a known profile, and flags
any significant variation. Our point is to stress the mathematics behind
NetEntropy: the reason of the rather incredible precision of NetEntropy
is to be found in theorems due to Paninski and Moddemeijer.
Keywords: sample entropy, Paninski estimator, malware, intrusion de-
tection.

1 Introduction

In 2006, we described a tool, NetEntropy, whose goal is to detect subverted
cryptographic network flows [16]. We had initially developed it as a plugin to
the Orchids intrusion detection tool [8] to help detect attacks such as [11] or [22]
where network traffic is encrypted and therefore cannot be inspected—unless we
rely on key escrows [12, Section 13.8.3], but NetEntropy is much easier to install
and use.

What NetEntropy does is estimate whether a source of bytes is sufficiently
close to a random, uniformly distributed source of bytes. Encrypted data, random
keys and nonces, compressed data should qualify as close. Plain text, but also
shellcodes, viruses and even polymorphic viruses should not.

To this end, NetEntropy computes the sample entropy HN of the source,
and compares it to an estimator ˆHN—a good enough approximation of what
the average value of HN should be if the source were indeed drawn at random,
uniformly. We use the Paninski estimator (to be introduced later), and show
that it gives an extraordinarily precise statistical test of non-randomness.

The purpose of this paper is to stress the mathematics behind this extraor-
dinary precision. Before we had researched the mathematics, the best we could
say was that NetEntropy worked well in practice, and this was supported by ex-
periments. How well it fared was beyond us: it was only when we discovered the
theorems in the literature that we realized that our entropy estimation technique
was in fact precise up to levels we had never even dreamed of.

Outline. We start by reviewing the attack that led us into inventing NetEn-
tropy in Section 2. As we said, NetEntropy evaluates the sample entropy of a

NetEntropy: entropy-based classification

• Still being downloaded 1-2 times a week

• Incorporated as an ORCHIDS module,
but can be used as a standalone tool

• One of our best-cited papers, e.g.:
 [Lyda, Hamrock 2007]
 [Dorfinger, Panholzer, Trammel, Pepe 2010]
 [Dorfinger, Panholzer, John 2011]
 [Han Zhang, Papadopoulos, Massey 2013]
 [Rossow, Dietrich 2013]
... mostly for detecting packers, Skype traffic, bots, etc.

http://www.lsv.ens-cachan.fr/net-entropy/

q0
q1

entropy−low (X) ssl−error (X)

In FPS’13,
Springer Verlag LNCS,

2014.

vendredi 11 juillet 14

http://www.lsv.ens-cachan.fr/~olivain/net-entropy/
http://www.lsv.ens-cachan.fr/~olivain/net-entropy/

NetEntropy: entropy-based classification

Two problems:

1.What should be statistical entropy like
for small data sizes?
 («undersampled» case)

2.When should we decide that a flow is
non-random?
 (how small are the
 confidence intervals?)

vendredi 11 juillet 14

NetEntropy: entropy-based classification

Two problems:

1.What should be statistical entropy like
for small data sizes?
 («undersampled» case)

2.When should we decide that a flow is
non-random?
 (how small are the
 confidence intervals?)

vendredi 11 juillet 14

• In the end, we shall use profile-based screening, of course

• But we do science to understand
why it is working (and with which values)

NetEntropy: entropy-based classification

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 64 256 1024 4096 16384 65536

En
tro

py
 (b

its
 p

er
 b

yt
e)

Data size (bytes)

Ranges
Demo connection

Out of range

Reenter range

Entropy alarm start

Entropy alarm stop

End of connection

vendredi 11 juillet 14

Problem 1: good entropy estimators

• How do you compute this?

• Change the problem: what is the bias
between statistical and actual entropy?

• Several known estimators:
[Miller, Madow 1955]
«jackknifed» [Efron, Stein 1981]
[Paninski 2004]

Definition (statistical entropy):
For a flow of bytes w:
where fi is frequency of letter i, m = 256

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 4 16 64 256 1024 4096 16384 65536

En
tro

py
 (b

its
 p

er
 b

yt
e)

Data size (bytes)

Statistical Entropy
log2(N)

bias
Actual entropy

vendredi 11 juillet 14

The Paninski estimator

• Is meant to estimate the entropy of a
uniform, random source
as a correction to statistical entropy

• In our case, the closer the estimate
 to H(w) = 8
 the better
Paninski looks perfect!

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 4 16 64 256 1024 4096 16384 65536

Av
er

ag
e

en
tro

py
 (i

n
bi

t p
er

 B
yt

es
)

Data size (in Byte)

sample entropy
Miller-Madow

jackknifed
Paninski

Definition (Paninski):

(m=256, c=N/m, N=#bytes read, uniform random source)

vendredi 11 juillet 14

Problem 1 solved

• For N bytes read w, compare

statistical entropy

with estimator

• Extremely good estimator!

• Fast to compute (tabulate anyway)

• The two quantities should be close
iff w is random-looking

• (But how close? This is problem 2.)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 1 4 16 64 256 1024 4096 16384 65536

Av
er

ag
e

er
ro

r (
in

 b
it

pe
r B

yt
es

)

Data size (in Byte)

vendredi 11 juillet 14

Problem 2: confidence intervals

• Recognizing text as non-random: easy

• A bit more challenging:

• Is this random?

vendredi 11 juillet 14

Problem 2: confidence intervals

• Recognizing text as non-random: easy

• A bit more challenging:

• Is this random?

• OK, even the human eye can see it

• Statistical entropy ≈ 1 bit apart:

• This is not random: std. dev ≈ 0.08 bit,
 99.9999% sure

(NB: these are the 32 first bytes of main() in some x86 code)

vendredi 11 juillet 14

Problem 2: confidence intervals

• Recognizing text as non-random: easy

• A bit more challenging:

• Is this random?

• OK, even the human eye can see it

• Statistical entropy ≈ 1 bit apart:

• This is not random: std. dev ≈ 0.08 bit,
 99.9999% sure

(NB: these are the 32 first bytes of main() in some x86 code)

Rather remarkable:
... we have only read 32 bytes
 i.e., there are 224 values
 we cannot have possibly seen
Extreme undersampling

vendredi 11 juillet 14

Estimating standard deviation

• Gives us no information for N small (yet)

• Non-degenerate case (variance ≠ 0) well-studied by statisticians
... but precisely,
 the uniform distribution is the degenerate case

• ... actually good news!

Theorem [Antos, Kontoyiannis 2001]:
When N tends to +∞, is Gaussian with mean 0
and variance

vendredi 11 juillet 14

Estimating standard deviation

• In the non-degenerate case, = O(1/√ N)

• In the degenerate case, ≈ 16.29/N:
 much smaller (i.e., much better)

• N =32 bytes was about the worst case
 (std. dev ≈ 0.08)

• 99% confidence interval is at 2.6 x
99.9% confidence interval is at 3.4 x

Theorem [Moddemeijer 2000]:
When N tends to +∞, the std. dev. ≈ √
(recall m=256)

0.00024
0.00049
0.00098

0.002
0.0039
0.0078
0.016
0.031
0.062
0.13

 4 16 64 256 1024 4096 16384 65536

St
an

da
rd

 d
ev

ia
tio

n
(b

its
 p

er
 b

yt
e)

Data size (bytes)

16.29/N

(Note: log-log scale)

vendredi 11 juillet 14

Confidence intervals: practical experiments

• Experiments on
non-random sources

• 99% confidence intervals:
(8.00 means 8±<0.01)

• All entries
correctly classified

easy

harder
to detect

(code mutation)

N large

N large

N small

N tiny

vendredi 11 juillet 14

Confidence intervals: practical experiments

• Experiments on
non-random sources

• 99% confidence intervals:
(8.00 means 8±<0.01)

• All entries
correctly classified

easy

harder
to detect

Pretty remarkable:
shellcode is encrypted,
 except tiny decryption routine
suffices to recognize it
 as non-random

(code mutation)

N large

N large

N small

N tiny

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Outline

1.A few scary stories about computer security

2.ORCHIDS: an intrusion prevention system

3.Semantics and algorithms

4.NetEntropy: detecting subverted cryptographic flows

5.Conclusion

vendredi 11 juillet 14

Conclusion

• Two examples of mathematical rigor in intrusion detection

• ORCHIDS: semantics («what») dictates algorithms («how»)

• NetEntropy: precise estimators + confidence intervals

• Of course mathematics will not solve all your problems!

But it will help you understand why something works,
and under which conditions/for what values of the parameters,

• A mathematical model may be idealized...
This is a good start! And certainly better than no model at all.

Theorems

vendredi 11 juillet 14

