
Computer-aided cryptographic proofs

Gilles Barthe & Yassine Lakhnech

IMDEA Software Institute, Madrid, Spain
Université Joseph Fourier & CNRS, Grenoble, France

Based on joint work with J.M. Crespo, F. Dupressoir, B. Grégoire,
C. Kunz, B. Schmidt, P.-Y. Strub, S. Zanella, J.C.B. Almeida,
M. Barbosa

Modern cryptography

1949

1984

1994

C. Shannon. Communication theory of secrecy systems.

◮ No practical encryption system is perfectly secure

◮ Scheme −→ Attack −→ Scheme −→ Attack −→ . . .

◮ Scheme deemed secure if no attack found for long time

S. Goldwasser and S. Micali. Probabilistic encryption.

◮ Complexity-theoretical approach

◮ Negligible probability to break a scheme in polynomial-time

M. Bellare and P. Rogaway. Optimal Asymmetric Encryption.

◮ Upper bound the probability to break a scheme in time t

Reductionist proof

Scheme

Reductionist proof

Scheme

Primitive

Reductionist proof

Scheme

Primitive

Generic

construction

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Attack

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Attack

Black-box

reduction

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Attack

Black-box

reduction

Ideally attacks have similar execution times

Public-key encryption

Algorithms (K, Epk ,Dsk)

◮ E probabilistic

◮ D deterministic and partial

If (sk ,pk) is a valid key pair,

Dsk (Epk (m)) = m

Encryption Decryption

Key generation

hello

Public
key

rwxtf

Secret
key

hello

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b)

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

mb

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

mb

Epk

c⋆

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

mb

Epk

c⋆

c⋆

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

mb

Epk

c⋆

c⋆ b′

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

mb

Epk

c⋆

c⋆ b′

?
=

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b) m0

m1

$

b

mb

Epk

c⋆

c⋆ b′

?
=

∣

∣

∣

∣

PrIND-CCA(A)

[

b′ = b
]

−
1

2

∣

∣

∣

∣

small

One-way trapdoor permutations

Algorithms (K, fpk , f
−1
sk)

◮ fpk and f−1
sk deterministic

If (sk ,pk) is a valid key pair,

f−1
sk (fpk (m)) = m

Encryption Decryption

Key generation

hello

Public
key

rwxtf

Secret
key

hello

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

fpk

x⋆

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

fpk

x⋆

x⋆

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

fpk

x⋆

x⋆ y ′

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

fpk

x⋆

x⋆ y ′

?
=

One-way trapdoor permutations

(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

fpk

x⋆

x⋆ y ′

?
=

PrOW(I)

[

y ′ = y
]

small

Optimal Asymmetric Encryption Padding

Encryption EOAEP(pk)(m) :

r $← {0,1}k0 ;

s ← G(r) ⊕ (m‖0k1);
t ← H(s)⊕ r ;
return fpk (s‖ t)

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕ H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

⊕ exclusive or ‖concatenation [·] projection 0 zero bitstring

Optimal Asymmetric Encryption Padding

Encryption EOAEP(pk)(m) :

r $← {0,1}k0 ;

s ← G(r) ⊕ (m‖0k1);
t ← H(s)⊕ r ;
return fpk (s‖ t)

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕ H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

For every IND-CCA adversary A against (K, EOAEP,DOAEP),
there exists a PDOW adversary I against (K, f, f−1) st

∣

∣PrIND-CCA(A)[b
′ = b]− 1

2

∣

∣ ≤

PrPDOW(I)[y
′ = y] +

3qDqG+q2
D
+4qD+qG

2k0
+ 2qD

2k1

OAEP: Optimal Asymmetric Encryption Padding

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2011

BGLZ

1994 Purported proof of chosen-ciphertext security

2001 1994 proof gives weaker security; desired security holds

◮ for a modified scheme ◮ under stronger assumptions

2004 Filled gaps in 2001 proof

2009 Security definition needs to be clarified

2011 Fills gaps in 2004 proof

What’s wrong with provable security?

◮ In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a

crisis of rigor. Bellare and Rogaway, 2004-2006

◮ Do we have a problem with cryptographic proofs? Yes, we

do [...] We generate more proofs than we carefully verify

(and as a consequence some of our published proofs are

incorrect). Halevi, 2005

Computer-aided cryptographic proofs

Provable security as deductive relational verification

of open probabilistic parametrized programs

CertiCrypt (2006-2011): adhere to cryptographic methods

◮ same level of abstraction

◮ same guarantees

◮ same proof techniques

EasyCrypt (2009-): adhere to cryptographic practice

◮ automation and scalability

◮ support for high level steps

◮ accessible to cryptographers

A language for cryptographic games

C ::= skip skip

| V ← E assignment

| V $← D random sampling

| C; C sequence

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

◮ E : (higher-order) expressions

◮ D: discrete sub-distributions

◮ P: procedures

}

user extensible

. oracles: concrete procedures

. adversaries: constrained abstract procedures

pRHL: a relational Hoare logic for games

◮ Judgment

� {P} c1 ∼ c2 {Q}

◮ Validity

∀m1,m2. (m1,m2) � P =⇒ (Jc1K m1, Jc2K m2) � Q♯

◮ Proof rules

� {P ∧ e〈1〉} c1 ∼ c {Q} � {P ∧ ¬e〈1〉} c2 ∼ c {Q}

� {P} if e then c1 else c2 ∼ c {Q}

P → e〈1〉=e′〈2〉

� {P ∧ e〈1〉} c1 ∼ c′

1 {Q} � {P ∧ ¬e〈1〉} c2 ∼ c′

2 {Q}

� {P} if e then c1 else c2 ∼ if e′ then c′

1 else c′

2 {Q}

+ random samplings, procedures, adversaries. . .

◮ Verification condition generator

Example: Bellare and Rogaway 1993 encryption

Game IND-CPA(A) :
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk(mb);
b′ ← A2(c

⋆);
return (b′ = b)

Encryption Epk (m) :
r $← {0,1}ℓ;
s ← H(r)⊕m;
y ← fpk (r)‖s;
return y

For every IND-CPA adversary A, there exists an inverter I st

∣

∣

∣

∣

PrIND-CPA(A)

[

b′ = b
]

−
1

2

∣

∣

∣

∣

≤ PrOW(I)

[

y ′ = y
]

Proof
Game hopping technique

Game INDCPA :
(sk, pk)← K();
(m0, m1) ← A1(pk);

b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← A2(c
⋆);

return (b′ = b)

Encryption Epk (m) :

r $← {0, 1}ℓ;
h ← H(r);
s ← h ⊕ m;
c ← fpk (r)‖s;
return c

Game G :
(sk, pk)← K();
(m0, m1) ← A1(pk);

b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← A2(c
⋆);

return (b′ = b)

Encryption Epk (m) :

r $← {0, 1}ℓ;

h $← {0, 1}k ;
s ← h ⊕ m;
c ← fpk (r)‖s;
return c

Game G′ :
(sk, pk)← K();
(m0, m1) ← A1(pk);

b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← A2(c
⋆);

return (b′ = b)

Encryption Epk (m) :

r $← {0, 1}ℓ;

s $← {0, 1}k ;
h ← s ⊕ m;
c ← fpk (r)‖s;
return c

Game OW :
(sk, pk)← K();

y $← {0, 1}ℓ;
y′ ← I(fpk (y));

return y = y′

Adversary I(x) :
(m0, m1) ← A1(pk);

s $← {0, 1}k ;
c⋆ ← x ‖s;
b′ ← A2(c

⋆);

y′ ← [z∈LAH |fpk (z)=x];

return y′

1. For each hop

◮ prove validity of pRHL judgment

◮ derive probability claim(s)

2. Obtain security bound by combining claims

3. Check execution time of constructed adversary

Conditional equivalence

Epk (m) :
r $← {0,1}ℓ;
h← H(r);
s ← h ⊕m;
c ← fpk (r)‖s;
return c

Epk (m) :
r $← {0,1}ℓ;

h $← {0,1}k ;

s ← h ⊕m;
c ← fpk (r)‖s;
return c

�

{

true
}

IND-CPA ∼ G
{

(¬r ∈ LA
H)〈2〉 → ≡

}

∣

∣PrIND-CPA

[

b′ = b
]

− PrG

[

b′ = b
]
∣

∣ ≤ PrG

[

r ∈ LA
H

]

Equivalence

Epk (m) :
r $← {0,1}ℓ;

h $← {0,1}k ;
s ← h ⊕m;
c ← fpk (r)‖s;
return c

Epk (m) :
r $← {0,1}ℓ;

s $← {0,1}k ;

h← s ⊕m;
c ← fpk (r)‖s;
return c

�

{

true
}

G ∼ G′
{

≡
}

PrG

[

r ∈ LA
H

]

= PrG′

[

r ∈ LA
H

]

PrG[b
′ = b] = PrG′[b

′ = b] = 1
2

Equivalence

Epk (m) :
r $← {0,1}ℓ;

h $← {0,1}k ;
s ← h ⊕m;
c ← fpk (r)‖s;
return c

Epk (m) :
r $← {0,1}ℓ;

s $← {0,1}k ;

h← s ⊕m;
c ← fpk (r)‖s;
return c

�

{

true
}

G ∼ G′
{

≡
}

∣

∣PrIND-CPA[b
′ = b]− 1

2

∣

∣ ≤ PrG′

[

r ∈ LA
H

]

Reduction

Game INDCPA :
(sk , pk)← K();
(m0,m1)← A1(pk);
b $← {0, 1};
c⋆ ← Epk(mb);
b′ ← A2(c

⋆);
return (b′ = b)

Encryption Epk(m) :
r $← {0, 1}

ℓ;

s $← {0, 1}
k ;

c ← fpk (r)‖s;
return c

Game OW :
(sk , pk)← K();

y $← {0, 1}
ℓ;

y ′ ← I(fpk (y));
return y = y ′

Adversary I(x) :
(m0,m1)← A1(pk);
b $← {0, 1};

s $← {0, 1}
k ;

c⋆ ← x ‖s;
b′ ← A2(c

⋆);

y ′ ← [z ∈ LAH | fpk(z) = x];
return y ′

�

{

true
}

G′ ∼ OW
{

(r ∈ LA
H)〈1〉 → (y ′ = y)〈2〉

}

PrG′

[

r ∈ LA
H

]

≤ PrOW(I)[y
′ = y]

Reduction

Game INDCPA :
(sk , pk)← K();
(m0,m1)← A1(pk);
b $← {0, 1};
c⋆ ← Epk(mb);
b′ ← A2(c

⋆);
return (b′ = b)

Encryption Epk(m) :

r $← {0, 1}
ℓ;

s $← {0, 1}
k ;

c ← fpk (r)‖s;
return c

Game OW :
(sk , pk)← K();

y $← {0, 1}
ℓ;

y ′ ← I(fpk (y));
return y = y ′

Adversary I(x) :
(m0,m1)← A1(pk);
b $← {0, 1};

s $← {0, 1}
k ;

c⋆ ← x ‖s;
b′ ← A2(c

⋆);

y ′ ← [z ∈ LAH | fpk(z) = x];
return y ′

�

{

true
}

G′ ∼ OW
{

(r ∈ LA
H)〈1〉 → (y ′ = y)〈2〉

}

∣

∣PrIND-CPA(A)[b
′ = b]− 1

2

∣

∣ ≤ PrOW(I)[y
′ = y]

Case studies

◮ Public-key encryption

◮ Signatures

◮ Hash function designs

◮ Block ciphers

◮ Zero-knowledge protocols

◮ Differential privacy

◮ (Computational) differential privacy

◮ Authenticated key exchange protocols

Compiler

Approximate

pRHL

Compositionality

Current directions

◮ Compositional proofs

One of the most vexing basic problems in computer

security is the problem of secure composition. [...] We

predict that secure composition will receive the increasing

attention that it deserves. Boneh and Mitchell, 2012

◮ Real-world cryptography

Real-world crypto is breakable; is in fact being broken; is

one of many ongoing disaster areas in security. Bernstein,

2013

◮ Synthesis of secure cryptographic schemes

Do cryptosystems reflect [...] the situations that are being

catered for? Or are they accidents of history and personal

background that may be obscuring fruitful developments?

After Landin, 1966

Real-world security of RSA-OAEP

1994 1996

Kocher

2001

Manger

2010

Strenzke

◮ plaintext is variable-sized: careless parsing leads to

padding oracle (Manger);

◮ RSA is permutation only on strict subset of the domain
considered (

[

0..2k
]

): careless error handling leads to

timing attacks;

◮ PKCS#1 prescribes some error messaging, rarely

considered in existing proofs.

Proving “real-world” security of RSA-OAEP:

outline

◮ Adapt the OAEP security proof to a low-level model of the

RSA PKCS#1 v2.1 standard

◮ Consider an extended adversary model:

Control and access to low-level encodings of inputs and
outputs,
Oracles also return a leakage trace meant to model
side-channels

◮ Extend and leverage CompCert’s semantic preservation

results to obtain a low-level, leakage-aware security result

on the compiled ASM code

A Low-Level Model...

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DOAEP(sk)(res, c) :

if (c ∈ MsgSpace(sk))

{ (b0, s, t)← f−1
sk (c);

h ← H(s); i ← 0;
while (i < hLen + 1)
{ s[i]← t[i]⊕ h[i]; i ← i + 1; }
g ← G(r); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);

if (b0 = 08 ∧ [p]hLen
l = 0..01∧

[p]hLen = LHash)
then

{rc ← Success;
memcpy(res,0,p,dbLen− l , l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;

...with Leakage

◮ Focus on Program Counter Security: adversary is given
the list of program points traversed while executing the

oracle

◮ Leakage due to the computation of the permutation is kept

abstract

◮ Axioms formalize our leakage assumptions on their

implementation

◮ Security assumption (PDOW) is slightly adapted to deal

with abstract leakage

CompCert and PC Security

◮ CompCert guarantees that traces of events are preserved

by compilation;

◮ Events are calls to the environment (system calls, random

sampling, hashing, key generation), and branching

decisions (each basic block starts with an event)

◮ Extend the CompCert run-time with a formally specified,

trusted Multi-Precision Integer Arithmetic library, assumed

to satisfy “good enough” leakage resistance

◮ Syntactic check on final ASM code guarantees that the

final annotations are sufficient.

Perspectives on real-world security

Still a model.

◮ Adversary and execution models are still somewhat

idealized

◮ Not clear how to prove memory obliviousness

◮ Consider more active side-channels (fault injection ...)

◮ Prove security in a virtualized environment

The next 700 cryptosystems: ZooCrypt

◮ generate all schemes up to user-defined constraints

◮ automatically prove security, or existence of an attack, by

combining the two views of cryptography

Using symbolic methods for

◮ Finding attacks

◮ Synthesis of decryption algorithm

◮ In proof system for

Computing symbolic entropy
Finding symbolic reduction

Minimality in cryptography

◮ OAEP (1994):

f ((m‖0)⊕G(r) ‖ r ⊕ H((m‖0)⊕G(r)))

not that Optimal; needs redundancy

◮ SAEP (2001):
f (r ‖ (m‖0)⊕G(r))

tighter reduction; needs redundancy

◮ ZAEP:

f (r || m ⊕G(r))

tighter reduction, bit-optimal, redundancy-free

Conclusion

Cryptography is

◮ a thriving research area at the crossroads of many fields

◮ a great source of challenging problems

◮ an exciting opportunity to apply PL and PV techniques

◮ Visit http://www.easycrypt.info

◮ Download EasyCrypt

◮ Attend first School and Workshop, July 16-19, 2013

