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Modern cryptography

1949

1984

1994

C. Shannon. Communication theory of secrecy systems.

◮ No practical encryption system is perfectly secure

◮ Scheme −→ Attack −→ Scheme −→ Attack −→ . . .

◮ Scheme deemed secure if no attack found for long time

S. Goldwasser and S. Micali. Probabilistic encryption.

◮ Complexity-theoretical approach

◮ Negligible probability to break a scheme in polynomial-time

M. Bellare and P. Rogaway. Optimal Asymmetric Encryption.

◮ Upper bound the probability to break a scheme in time t
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Ideally attacks have similar execution times



Public-key encryption

Algorithms (K, Epk ,Dsk )

◮ E probabilistic

◮ D deterministic and partial

If (sk ,pk) is a valid key pair,

Dsk (Epk (m)) = m

Encryption Decryption

Key generation

hello

Public
key

rwxtf

Secret
key

hello



Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND-CCA(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c

⋆);
return (b′ = b)
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One-way trapdoor permutations

Algorithms (K, fpk , f
−1
sk )

◮ fpk and f−1
sk deterministic

If (sk ,pk) is a valid key pair,

f−1
sk (fpk (m)) = m

Encryption Decryption

Key generation

hello

Public
key

rwxtf
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key
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y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
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(sk ,pk) ← K();
y $← {0,1}n;
x⋆ ← fpk (y);
y ′ ← I(x⋆);
return (y ′ = y)

$

y

fpk

x⋆

x⋆ y ′

?
=

PrOW(I)

[

y ′ = y
]

small



Optimal Asymmetric Encryption Padding

Encryption EOAEP(pk)(m) :

r $← {0,1}k0 ;

s ← G(r) ⊕ (m‖0k1);
t ← H(s)⊕ r ;
return fpk (s‖ t)

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕ H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

⊕ exclusive or ‖concatenation [·] projection 0 zero bitstring



Optimal Asymmetric Encryption Padding

Encryption EOAEP(pk)(m) :

r $← {0,1}k0 ;

s ← G(r) ⊕ (m‖0k1);
t ← H(s)⊕ r ;
return fpk (s‖ t)

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕ H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

For every IND-CCA adversary A against (K, EOAEP,DOAEP),
there exists a PDOW adversary I against (K, f, f−1) st
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OAEP: Optimal Asymmetric Encryption Padding

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2011

BGLZ

1994 Purported proof of chosen-ciphertext security

2001 1994 proof gives weaker security; desired security holds

◮ for a modified scheme ◮ under stronger assumptions

2004 Filled gaps in 2001 proof

2009 Security definition needs to be clarified

2011 Fills gaps in 2004 proof



What’s wrong with provable security?

◮ In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a

crisis of rigor. Bellare and Rogaway, 2004-2006

◮ Do we have a problem with cryptographic proofs? Yes, we

do [...] We generate more proofs than we carefully verify

(and as a consequence some of our published proofs are

incorrect). Halevi, 2005



Computer-aided cryptographic proofs

Provable security as deductive relational verification

of open probabilistic parametrized programs

CertiCrypt (2006-2011): adhere to cryptographic methods

◮ same level of abstraction

◮ same guarantees

◮ same proof techniques

EasyCrypt (2009-): adhere to cryptographic practice

◮ automation and scalability

◮ support for high level steps

◮ accessible to cryptographers



A language for cryptographic games

C ::= skip skip

| V ← E assignment

| V $← D random sampling

| C; C sequence

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

◮ E : (higher-order) expressions

◮ D: discrete sub-distributions

◮ P: procedures

}

user extensible

. oracles: concrete procedures

. adversaries: constrained abstract procedures



pRHL: a relational Hoare logic for games

◮ Judgment

� {P} c1 ∼ c2 {Q}

◮ Validity

∀m1,m2. (m1,m2) � P =⇒ (Jc1K m1, Jc2K m2) � Q♯

◮ Proof rules

� {P ∧ e〈1〉} c1 ∼ c {Q} � {P ∧ ¬e〈1〉} c2 ∼ c {Q}

� {P} if e then c1 else c2 ∼ c {Q}

P → e〈1〉=e′〈2〉

� {P ∧ e〈1〉} c1 ∼ c′

1 {Q} � {P ∧ ¬e〈1〉} c2 ∼ c′

2 {Q}

� {P} if e then c1 else c2 ∼ if e′ then c′

1 else c′

2 {Q}

+ random samplings, procedures, adversaries. . .

◮ Verification condition generator



Example: Bellare and Rogaway 1993 encryption

Game IND-CPA(A) :
(sk ,pk) ← K( );
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk(mb);
b′ ← A2(c

⋆);
return (b′ = b)

Encryption Epk (m) :
r $← {0,1}ℓ;
s ← H(r)⊕m;
y ← fpk (r)‖s;
return y

For every IND-CPA adversary A, there exists an inverter I st

∣

∣

∣

∣

PrIND-CPA(A)

[

b′ = b
]

−
1

2

∣

∣

∣

∣

≤ PrOW(I)

[

y ′ = y
]



Proof
Game hopping technique

Game INDCPA :
(sk, pk)← K();
(m0, m1) ← A1(pk);

b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← A2(c
⋆);

return (b′ = b)

Encryption Epk (m) :

r $← {0, 1}ℓ;
h ← H(r );
s ← h ⊕ m;
c ← fpk (r )‖s;
return c

Game G :
(sk, pk)← K();
(m0, m1) ← A1(pk);

b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← A2(c
⋆);

return (b′ = b)

Encryption Epk (m) :

r $← {0, 1}ℓ;

h $← {0, 1}k ;
s ← h ⊕ m;
c ← fpk (r )‖s;
return c

Game G′ :
(sk, pk)← K();
(m0, m1) ← A1(pk);

b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← A2(c
⋆);

return (b′ = b)

Encryption Epk (m) :

r $← {0, 1}ℓ;

s $← {0, 1}k ;
h ← s ⊕ m;
c ← fpk (r )‖s;
return c

Game OW :
(sk, pk)← K();

y $← {0, 1}ℓ;
y′ ← I(fpk (y));

return y = y′

Adversary I(x) :
(m0, m1) ← A1(pk);

s $← {0, 1}k ;
c⋆ ← x ‖s;
b′ ← A2(c

⋆);

y′ ← [z∈LAH |fpk (z)=x ];

return y′

1. For each hop

◮ prove validity of pRHL judgment

◮ derive probability claim(s)

2. Obtain security bound by combining claims

3. Check execution time of constructed adversary



Conditional equivalence

Epk (m) :
r $← {0,1}ℓ;
h← H(r);
s ← h ⊕m;
c ← fpk (r)‖s;
return c

Epk (m) :
r $← {0,1}ℓ;

h $← {0,1}k ;

s ← h ⊕m;
c ← fpk (r)‖s;
return c

�

{

true
}

IND-CPA ∼ G
{

(¬r ∈ LA
H )〈2〉 → ≡

}

∣

∣PrIND-CPA

[

b′ = b
]

− PrG

[

b′ = b
]
∣

∣ ≤ PrG

[

r ∈ LA
H

]



Equivalence

Epk (m) :
r $← {0,1}ℓ;

h $← {0,1}k ;
s ← h ⊕m;
c ← fpk (r)‖s;
return c

Epk (m) :
r $← {0,1}ℓ;

s $← {0,1}k ;

h← s ⊕m;
c ← fpk (r)‖s;
return c

�

{

true
}

G ∼ G′
{

≡
}

PrG

[

r ∈ LA
H

]

= PrG′

[

r ∈ LA
H

]

PrG[b
′ = b] = PrG′[b

′ = b] = 1
2



Equivalence

Epk (m) :
r $← {0,1}ℓ;

h $← {0,1}k ;
s ← h ⊕m;
c ← fpk (r)‖s;
return c

Epk (m) :
r $← {0,1}ℓ;

s $← {0,1}k ;

h← s ⊕m;
c ← fpk (r)‖s;
return c

�

{

true
}

G ∼ G′
{

≡
}

∣

∣PrIND-CPA[b
′ = b]− 1

2

∣

∣ ≤ PrG′

[

r ∈ LA
H

]



Reduction

Game INDCPA :
(sk , pk)← K();
(m0,m1)← A1(pk);
b $← {0, 1};
c⋆ ← Epk(mb);
b′ ← A2(c

⋆);
return (b′ = b)

Encryption Epk(m) :
r $← {0, 1}

ℓ;

s $← {0, 1}
k ;

c ← fpk (r)‖s;
return c

Game OW :
(sk , pk)← K();

y $← {0, 1}
ℓ;

y ′ ← I(fpk (y));
return y = y ′

Adversary I(x) :
(m0,m1)← A1(pk);
b $← {0, 1};

s $← {0, 1}
k ;

c⋆ ← x ‖s;
b′ ← A2(c

⋆);

y ′ ← [z ∈ LAH | fpk(z) = x];
return y ′

�

{

true
}

G′ ∼ OW
{

(r ∈ LA
H )〈1〉 → (y ′ = y)〈2〉

}

PrG′

[

r ∈ LA
H

]

≤ PrOW(I)[y
′ = y ]
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Case studies

◮ Public-key encryption

◮ Signatures

◮ Hash function designs

◮ Block ciphers

◮ Zero-knowledge protocols

◮ Differential privacy

◮ (Computational) differential privacy

◮ Authenticated key exchange protocols

Compiler

Approximate

pRHL

Compositionality



Current directions

◮ Compositional proofs

One of the most vexing basic problems in computer

security is the problem of secure composition. [...] We

predict that secure composition will receive the increasing

attention that it deserves. Boneh and Mitchell, 2012

◮ Real-world cryptography

Real-world crypto is breakable; is in fact being broken; is

one of many ongoing disaster areas in security. Bernstein,

2013

◮ Synthesis of secure cryptographic schemes

Do cryptosystems reflect [...] the situations that are being

catered for? Or are they accidents of history and personal

background that may be obscuring fruitful developments?

After Landin, 1966



Real-world security of RSA-OAEP

1994 1996

Kocher

2001

Manger

2010

Strenzke

◮ plaintext is variable-sized: careless parsing leads to

padding oracle (Manger);

◮ RSA is permutation only on strict subset of the domain
considered (

[

0..2k
]

): careless error handling leads to

timing attacks;

◮ PKCS#1 prescribes some error messaging, rarely

considered in existing proofs.



Proving “real-world” security of RSA-OAEP:

outline

◮ Adapt the OAEP security proof to a low-level model of the

RSA PKCS#1 v2.1 standard

◮ Consider an extended adversary model:

Control and access to low-level encodings of inputs and
outputs,
Oracles also return a leakage trace meant to model
side-channels

◮ Extend and leverage CompCert’s semantic preservation

results to obtain a low-level, leakage-aware security result

on the compiled ASM code



A Low-Level Model...

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DOAEP(sk)(res, c) :

if (c ∈ MsgSpace(sk))

{ (b0, s, t)← f−1
sk (c);

h ← H(s); i ← 0;
while (i < hLen + 1)
{ s[i]← t[i]⊕ h[i]; i ← i + 1; }
g ← G(r); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);

if (b0 = 08 ∧ [p]hLen
l = 0..01∧

[p]hLen = LHash)
then

{rc ← Success;
memcpy(res,0,p,dbLen− l , l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;



...with Leakage

◮ Focus on Program Counter Security: adversary is given
the list of program points traversed while executing the

oracle

◮ Leakage due to the computation of the permutation is kept

abstract

◮ Axioms formalize our leakage assumptions on their

implementation

◮ Security assumption (PDOW) is slightly adapted to deal

with abstract leakage



CompCert and PC Security

◮ CompCert guarantees that traces of events are preserved

by compilation;

◮ Events are calls to the environment (system calls, random

sampling, hashing, key generation), and branching

decisions (each basic block starts with an event)

◮ Extend the CompCert run-time with a formally specified,

trusted Multi-Precision Integer Arithmetic library, assumed

to satisfy “good enough” leakage resistance

◮ Syntactic check on final ASM code guarantees that the

final annotations are sufficient.



Perspectives on real-world security

Still a model.

◮ Adversary and execution models are still somewhat

idealized

◮ Not clear how to prove memory obliviousness

◮ Consider more active side-channels (fault injection ...)

◮ Prove security in a virtualized environment



The next 700 cryptosystems: ZooCrypt

◮ generate all schemes up to user-defined constraints

◮ automatically prove security, or existence of an attack, by

combining the two views of cryptography

Using symbolic methods for

◮ Finding attacks

◮ Synthesis of decryption algorithm

◮ In proof system for

Computing symbolic entropy
Finding symbolic reduction



Minimality in cryptography

◮ OAEP (1994):

f ((m‖0)⊕G(r) ‖ r ⊕ H((m‖0)⊕G(r)))

not that Optimal; needs redundancy

◮ SAEP (2001):
f (r ‖ (m‖0)⊕G(r))

tighter reduction; needs redundancy

◮ ZAEP:

f (r || m ⊕G(r))

tighter reduction, bit-optimal, redundancy-free



Conclusion

Cryptography is

◮ a thriving research area at the crossroads of many fields

◮ a great source of challenging problems

◮ an exciting opportunity to apply PL and PV techniques

◮ Visit http://www.easycrypt.info

◮ Download EasyCrypt

◮ Attend first School and Workshop, July 16-19, 2013


