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Overview  

 Stochastic Hybrid Automata 

 Biological Oscillator 

 Continuous vs. Stochastic Models 

 Parameter Optimization – ANOVA 

 Energy Aware Building 

 Controller Synthesis for Hybrid Systems 

Grenoble Summer School Alexandre David [2] 



Stochastic Hybrid 
Automata 



Stochastic Semantics of TA 

Grenoble Summer School Alexandre David [4] 

Uniform Distribution 
Exponential Distribution 

Input enabled 
Composition = 
Repeated races between components 
for outputting 

1 

2 3 4 5 

0.5 

1 
Let’s make this hybrid. 
What happens to the semantics if you add 
differential equations? 



Stochastic Hybrid Systems 

 A Bouncing Ball 

Grenoble Summer School 

Ball 
Player 1 

Player 2 

simulate 1 [<=20]{Ball1.p, Ball2.p} 

Pr[<=20](<>(time>=12 && Ball.p>4)) 

Alexandre David [5] 



UPPAAL SMC 

 Uniform distributions (bounded delay) 

 Exponential distributions (unbounded delay) 

 Discrete probabilistic choices 

 Distribution on successor state – random 

 Hybrid flow by use of ODEs 

 + usual UPPAAL features 

 Logic: MITL support. 

Grenoble Summer School Alexandre David [6] 
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Hybrid Automata 

H=(L, l0,§, X,E,F,Inv) 
where 

 L set of locations 
 l0 initial location 
 §=§i [ §o   set of actions 
 X set of continuous 

variables   
   valuation  º: X!R             
                          (=RX) 

 E set of edges (l,g,a,Á,l’) 
with gµRX   and    

                 ÁµRX£R
X
  and  a2§ 

 For each l a  
delay function  
    F(l): R>0£RX  ! RX 

 For each l an invariant  
    Inv(l)µRX               

Grenoble Summer School Alexandre David [12] 

Player 1 Player 2 

Ball I/O – broadcast sync 
 input-enabled 
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Player 1 Player 2 

Ball 

General “delay”. 
Handles clock rates. 



Hybrid Automata 

Grenoble Summer School Alexandre David [14] 

Semantics 

 States  
    (l,º)  where º2RX 

 Transitions 
 (l,º) !d  (l,º’) where     
    º’=F(l)(d,º)   
    provided º’2 Inv(l) 
 
 (l,º) !a (l’,º’) if 

    there exists  (l,g,a,Á,l’)2E 

    with º2g and  

           (º,º’)2Á and   

            º’2 Inv(l’) 

 

 
 

 

(p = 10; v = 0)
d! (p = 10¡ 9:81=2d2; v = ¡9:81d)

bounce!! (p = 0; v = 14:02 ¢ 0:83) at d = 1:43

d! (p = 6:92; v = 0) at d = 1:18

d! (p = 0; v = 11:51) at d = 1:18

bounce!! : : :

Ball 



Stochastic Hybrid Automata 

Grenoble Summer School Alexandre David [15] 

* Dirac’s delta functions for  
deterministic delays / next state 

Stochastic Semantics 

For each state s=(l,º)  

 
Delay density function*  

 ¹s: R>0! R 

 

Output Probability Function 

 °s: §o! [0,1] 

 

Next-state density function* 

 ´a s: St! R  

                          where a2§. 

 
   

 

 
 

Ball 

Player 1 

𝑃𝑟1 ℎ𝑖𝑡! 𝑏𝑜𝑢𝑛𝑐𝑒! =  2.5 𝑒−2.5𝑡 𝑑𝑡
𝑡=1.43

𝑡=0

 

 
               = −𝑒−2.5𝑡 0

1.43 = 0.97 

Player 2 

𝑃𝑟2 ℎ𝑖𝑡! 𝑏𝑜𝑢𝑛𝑐𝑒! =  
1
3 𝑑𝑡

𝑡=1.43

𝑡=0

 

 
               = 1

3  𝑡 0
1.43 = 0.48 

(p = 10; v = 0)
d! (p = 10¡ 9:81=2d2; v = ¡9:81d)

bounce!! (p = 0; v = 14:02 ¢ 0:83) at d = 1:43



Solving ODEs/Stochastic 
Semantics 

Grenoble Summer 
School 

16 

Time 

Processes 

Ball 

Player 

<Integrator> 
Fixed delay dt  clock updates. 

Delay given by distribution  hit! 

Fixed delay to reach p==0  bounce. 

Race between processes. 

Choice of dt and clock updates can be changed (solver). 



Biological Oscillator  



A Biological Oscillator  

 Circadian oscillator. 
N. Barkai and S. Leibler. Biological rhythms: 
Circadian clocks limited by noise. Nature, 403:267–
268, 2000 

 Two ways to model: 
1. Stochastic model that follow the reactions. 

2. Continuous model solving the ODEs. 

 Analysis: 
 Evaluate time between peaks. 

 The continuous model is the limit behavior of the 
stochastic model. 

 Use frequency analysis for comparison. 

Grenoble Summer School 18 



Stochastic Model 

Grenoble Summer School 19 



Continuous Model 

Grenoble Summer School 20 



Results of Simulations 

Grenoble Summer School 21 



Frequency Domain Analysis 

(Fourrier Transform) 

Grenoble Summer School 22 



Time Between Peaks 

 Use the MITL formula 
true U[<=1000] (A>1100 & 

true U[<=5] A<=1000). 

 Generate monitors (one 
shown). 

 Run SMC. 

Grenoble Summer School 23 

1100 

1000 5 



Energy Aware 
Buildings 



What This Work is About 

 Find optimal parameters for, e.g., a 
controller. 

 Applied to stochastic hybrid systems. 

 Suitable for different domains: biology, avionics… 

 

 Technique: statistical model-checking. 

 This work: Apply ANOVA to reduce the number of 
needed simulations. 

Grenoble Summer School 25 



Overview 

 Energy aware buildings 

 The case-study in a nutshell 

 Choosing the parameters 

 Naïve approach 

 Efficiently choosing the (best) parameters 

 ANOVA 

Grenoble Summer School 26 



Energy Aware Buildings 

 The case: 

 Building with rooms separated by doors or walls. 

 Contact with the environment by windows or walls. 

 Few transportable heat sources between the rooms. 

 Objective: maintain the temperature within range.  

Grenoble Summer School 27 



Energy Aware Buildings 

 Model: 

 Matrix of coefficients for heat transfer between 
rooms. 
 
 

 

 Environment temperature  weather model. 

 Different controllers  user profiles. 

 Goal: 

 Optimize the controller. 

Grenoble Summer School 28 



Model Overview 

Grenoble Summer School 29 

Room 

Room 

Room 

Heater 

Heater 

Local bang-bang 

controllers. 

Controller 

User Profiles (per room) 

Monitor 

Global 

controller. 

Weather model 



Stochastic Hybrid Model of the Room 

Grenoble Summer School 30 



Model of the Heater 

Grenoble Summer School 31 

Local “bang-bang” controller. 



Main Controller 

Grenoble Summer School 32 



Dynamic User Profile 

Grenoble Summer 
School 

33 



Global Monitoring 

Grenoble Summer School 34 

+  Maximize comfort. 

-   Minimize energy. 

?  Play with Ton and Tget. 

(Possible with Toff but not here). 



Simulations 

Grenoble Summer 
School 

35 

Weather Model 

User Profile 



Simulations 

Grenoble Summer 
School 

36 

simulate 1 [<=2*day]{ T[1], T[2], T[3], T[4], T[5] } 

simulate 1 [<=2*day]{ Heater(1).r,Heater(2).r,Heater(3).r } 



How to Pick the Parameter 
Values? 

 Ton, Tget ∈ 16,22 → 49 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐ℎ𝑜𝑖𝑐𝑒𝑠.  
More if considering other parameters. 

 Stochastic simulations. 

 Weather not deterministic. 

 User not deterministic (present, absent…) 

 How to decide that one combination is 
better? 

 Probabilistic comparisons? 
49*48 comparisons * number of runs. 

 To optimize what? Discomfort or energy? 

Grenoble Summer School 37 



How to Pick the Parameter 
Values? 

 Remark: 

 Stochastic hybrid system 
 SMC 

 Idea: 

 Generate runs. 

 Plot the result energy/comfort. 

 Pick the Pareto frontier of the means. 

 How many runs do you need? 

 What’s the significance of the results? 

Grenoble Summer School 38 

energy 

discomfort 



“Naïve” Solution 

 Estimate the probabilities 
Pr[discomfort<=100](<> time >= 2*day) 
Pr[energy<=1000](<> time >= 2*day) 

 From the obtained distributions (confidence 
known), compute the means. 

 Pick the Pareto frontier of the means. 

Grenoble Summer School 39 

discomfort 

probability 



“Naïve” Approach 
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For each (Ton,Tget) 

energy 

discomfort 



ANOVA Method 

 Compare several distributions. 

 Evaluate influence of each factor on the outcome. 

 Generalization of Student’s t-test. 

 Compare 2 distributions using the mean of their 
difference. 

 If confidence interval does not include zero, 
distributions are significantly different. 

 Cheaper than evaluating 2 means + on-the-fly 
possible. 

Grenoble Summer School 41 



ANOVA Method 

 2-factor factorial experiment design 

  Ton, Tget are our 2 factors. 

 Each combination gives a distribution to compare. 

 Measure cost outcome (discomfort or energy). 

 ANOVA estimates a linear model and 
computes the influence of each factor. 

 The measure of the influence is the F-statistic. 

 This is translated into P-value, the factor 
significance. 

 Assume balanced experiments. 

Grenoble Summer School 42 



ANOVA Method 

 Generate balanced measurements for each 
configuration to compare. 

 Apply ANOVA on the data (used the tool R). 

 If the factors are not significant, goto 1. 

 Reuse the data and compute the confidence 
intervals of the means for each comparison. 

 Compute the Pareto frontier. 

Grenoble Summer School 43 

Fewer runs, more efficient than before. 



ANOVA Results 
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P<0.05significant 



Results 
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Visualization of the Cost Model 

Grenoble Summer 
School 
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Results 
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Comparison 

 Naïve approach: 
738 runs per evaluation per cost 
*2 (energy & discomfort) *49 
(configurations). 
 1h 5min 

 ANOVA: 

3136 runs  6min 6s. 

 Core i7 2600 

Grenoble Summer School 48 



Discussion 

 Analysis of variance used sequentially to 
decide when there is enough data to 
distinguish the effect of 2 factors. 

 Efficient use of SMC. 

 What if the factor has no influence? 

 Need an alternative test. 

 Possible to distribute. 

 Future work: Integrate ANOVA in UPPAAL 

Grenoble Summer School 49 



Hybrid  
Controller Synthesis  

SMC 



Stochastic Hybrid Systems 

Grenoble Summer School Alexandre David [51] 

on/off 

on/off 

Room 1 

Room 2 
Heater 

simulate 1 [<=100]{Temp(0).T, Temp(1).T} 

simulate 10 [<=100]{Temp(0).T, Temp(1).T} 

Pr[<=100](<> Temp(0).T >= 10) 

Pr[<=100](<> Temp(1).T<=5 and time>30) >= 0.2 



Room 

const int Tenv=7; 

const int k=2; 

const int H=20; 

const int TB[4]= 

       {12, 18, 25, 28}; 

Controller Synthesis 

Grenoble Summer School Alexandre David [52] 

on/off ?? 

const int Tenv=7; 

const int k=2; 

const int H=20; 

const int TB[4]= 

       {12, 18, 25, 28}; 

low 

normal 

high 

critical high 

critical low 

12 

18 

25 

28 

Room 

Room Heater 

Room 



Unfolding 

Grenoble Summer School Alexandre David [53] 

low 

normal 

high 

critical high 

critical low 

12 

18 

25 

28 



Timing 

Grenoble Summer School Alexandre David [54] 

low 

normal 

high 

critical high 

critical low 

12 

18 

25 

28 



TA Abstraction 

Grenoble Summer School Alexandre David [55] 

const int uL[3]={3,5,2}; 

const int uU[3]={4,6,3}; 

const int dL[3]={3,9,15}; 

const int dU[3]={4,10,16} 



Validation by co-Simulation 

Grenoble Summer School Alexandre David [56] 



Validation by co-Simulation 

Grenoble Summer School Alexandre David [57] 

const int uL[3]={3,8,2}; 

const int uU[3]={4,9,3}; 

const int dL[3]={3,9,15}; 

const int dU[3]={4,10,16} 



Synthesis using TIGA 

Alexandre David [58] Grenoble Summer School 

../../UPPAAL/uppaal-tiga-0.13/bin-Win32/twotankstr.txt


Other Case Studies 

FIREWIRE BLUETOOTH  10 node LMAC 

Battery 

Scheduling 

Alexandre David [59] Grenoble Summer School 

Energy Aware 

Buildings 

Genetic Oscilator 

(HBS) 

Passenger 

Seating in 

Aircraft 

Schedulability 

Analysis for 

Mix Cr Sys 

Smart Grid 

Demand / 

Response 


