
Components based systems with 
Probabilistic choice 

Doron Peled 

Bar Ilan University 



Structure 

 Development of reliable systems. 

 Implementing components based systems. 

 Components based systems with 

probabilistic choices. 



History of (concurrent) software 
development 

 Early software development: programming [Ada 

Lovelance]. 

 Testing introduced into the software development 

cycle (inspection, walkthrough) [Meyer]. 

 Program verification is invented [Floyd, Hoare]. 

 Automatic verification (model checking) is invented 

[Clarke+Emerson, Quelle+Sifakis]. 

 Automatic synthesis? 



Why not synthesize the software 
directly from specification? 

Specification System 

Model checking/ 

testing 

Yes!! No + 

Counterexample 

Revision 

Specification 

Synthesis 

System 



A less direct approach 

Specification System 

Model checking 

Yes!! No + 

Counterexample 

Revision 

Specification 

Synthesis 

System 

Compilation 

Intermediate 
description 



In fact, synthesis was attempted quite 
early 

 First model checking paper by 
[Clark+Emerson] was also about 
synthesis. 

 Similar idea (different formalism) 
by [Manna+Wolper]. 

 Translate the specification into 
an automaton (tableau) that 
accepts the same executions. 
Then translate this automaton 
into code. 

 The code is sequential, or 
controlled by a centralized 
scheduler. 

R::P!4; 

    

Q:R!x+5 

P::R?y 

R::Q?z 



Reactive sequential systems synthesis 

 Problem [Buchi, Rabin]: How to automatically 
construct an automaton that interacts with an 
uncontrolled environment and guarantees that 
together they will satisfy some regular property. 

 [Pnueli+Rosner]: Similar for the allowed executions 
to satisfy some temporal (LTL) property*. 

 Solution: Translation (LTLAutomata) + 
Determinization + Game theory construction. 

 
*This is a subproblem of the above, as LTL properties are star-free 

regular. 



Complexity of sequential synthesis is high 

 2EXPTIME Complete for LTL specification. 

 … But, there are provable systems where the 

number of states is doubly exponential. 

 But must the size of a circuit that implements such a 

system be also doubly exponential? 

 [Fearnly+Peled+Schewe]: 

If we knew, we could have decided whether 

EXPSPACE=2EXPTIME or not. 



Concurrent synthesis 

 Several processes, with some communication 

architecture. We want the system to satisfy some 

LTL property. 

 [Pnueli+Rosner]: It is undecidable even to check 

whether there is a system with the given architecture 

that satisfies the LTL property. 

 But under some strong assumptions (e.g., 

hierarchical systems) we can solve this 

[Pnueli+Rosner], [Finkbeiner+Schewe], 

[Thiagarajan+Madhusudan], [Kupferman+Vardi]. 



Mostly, negative results about 
synthesis of concurrent systems. 

 Few positive results: …, it is 
decidable for some very 
limited architectures, mostly 
when there is a hierarchy 
between the processes. 

 … in these cases, the 
complexity is very high … 



Alternative 

 Allow a formalism that is high level but 

already includes a distribution of the tastks 

among autonomous components. 

 Provides a simple automatic way to 

transform the design into implementation. 



Component based systems 

A component (process) is an automaton. 

From the marked state, a and b are 

enabled locally. 

d 

b a 

f 
e 

C1 



Components may share transitions, on 
which they coordinate. 

h 

c b 

g a 

k j 

c 

a 

b c 

m 

n 

d 

b a 

f 
e 

C1 

C2 

C3 



Verimag’s BIP (Behavior Interactions 
Priorities) are component based systems! 

BIP BIP 



A global state is a combination of local 
states 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

From the given global state, d, n and c are enabled. 



The  local view of a component in a global 
state is the local state + enabled actions. 

h d 

c b 
b a 

g f 
e s4 

a 

k j 

c 

a 

b c 

m 

n 

C1 
C2 

C3 

The local view of C3  here is <s4,{c}>. 

Assume a mechanism where a component can sense its local view 



How to implement scheduling? 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

C1 may pick up a, while C2 may pick up b, but C3 will pick up c. 

Not working.. 



How to implement scheduling? 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

So C1 picks up b, C2 picks up c and C3 picks up a. 

Not working again… 



We need some mechanism for 
decisions 

 Michael Rabin showed that a symmetric non-
probabilistic algorithm cannot be given. 

 

 Synchronizers like α–core, can be used. 

 This is interaction-centric view. 

  

 Consider the case that we want to guarantee 
selections by components (e.g., when we need to 
make some probabilistic choices). 

 

 This is a component-centric scheduling. 



Some retrospect 

 

 Implementing concurrent systems from a 

simple model of component  automata is not 

as simple as thought. 

 Similar problems exist when implementing 

multiple choice synchronous communication 

as in CSP or ADA 

R::[ P?x [] Q?y] || P::R!3 || Q::R!z 



Interaction based scheduling using 
α-core 

d 

b a 

f 
e a 

k j 

c 

a 

b c 

m 

C1 
C3 

C1 sends OFFER to a-interaction 

C2 sends OFFER to a-interaction 

a-interaction sends LOCK to C1 

a-interaction sends LOCK to C2 

C1 sends OK to a-interaction 

C2 sends OK to a-interaction 

a-interaction sends START to C1 

a-interaction sends START to C2 

More messages for cancelling 

communication or finishing it. 



Problems with the interaction-
based scheduling 

 Expensive: requires quite a lot of message 

passing, and a process for each 

coordination. 

 Does not support probabilistic decisions. 

 An error is identified in the α-core algoritm 

and was fixed automatically using a genetic 

programming tool based on model checking 

[Katz+Peled]. 



Consider the following situation 

 a – I will write alone a paper to a conference. 

 b – We will write together a paper to a conference. 

 c – You will write alone a paper to a conference. 

 Neither you or me have time to write two papers 

(but we can write one each, separately). 

c b b a 
b 

C1 
C2 



Difficult situation: what to do? 

 We can decide separately, but need to decide 

consistently: cannot be that C1 decides on working 

separately and C2 decides to collaborate. 

 To decide on collaboration, we needs to coordinate.  

c b b a 
b 

C1 
C2 



Difficult situation: what to do? 

 Perhaps we need to throw a coin. Say we both have 

a fair coin. 

 So, the chance of collaboration is 50-50? 

 One of us throws the coin faster… 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 



How to model this w.r.t. the state 
space? 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

b 

c 

c 



Markov Process? 
A graph + a distribution function 
from each state to the set of states 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

b 

c 

c ? 
? 

? 



Certainly not… distribution must 
sums up to 1 !! 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

c 

c 

b 
0.5 

0.5 0.5 



No, we use fair coins… 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

c 

c 

b 
0.333 

0.333 0.333 



Only if the chance of C1 and C2 to 
throw the coin first is 0.5 each! 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

c 

c 

b 

0.5 

0.25 0.25 



A more realistic model:  
depends on which component throws the 
coin first. 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

b 

c 

c 

0.5 0.5 0.5 0.5 

b 

C1 C2 

C1 C2 



What is the chance of a to occur? 
b to occur? c to occur? 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

b 

c 

c 

0.5 0.5 0.5 0.5 

b 

C1 C2 

C1 C2 



What is the chance of a to occur? 
b to occur? c to occur? 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

b 

c 

c 

0.5 0.5 0.5 0.5 

b 

C1 C2 

C1 C2 

It really 
depends on 
the scheduling 
of throwing the 
coin. 

If we do not have 
the probabilities 
for that, we can 
only provide 
lower and upper 
bound. 



Chance of a (of c) to occur immediately 
between 0 and 0.5. 
Chance b to occur 0.5. 

c b b a 

b 

C1 
C2 

0.5 0.5 0.5 0.5 

a 

a 

b 

c 

c 

0.5 0.5 0.5 0.5 

b 

C1 C2 

C1 C2 



Markov Decision Process 

a 

a 

b 

c 

c 

0.5 0.5 0.5 0.5 

b 

C1 C2 

C1 C2 

 Set of states S. 

 [Initial state s0.] 

 Actions A. 

 For each state s in S, A(s) is a 

distribution function on S. 

I.e., 0≤A(s)[s’]≤1 and 

Σs in S A(s)[s’]=1. 

 



Markov Decision Process Modeling 
component based systems 

a 

a 

b 

c 

c 

0.5 0.5 0.5 0.5 

b 

C1 C2 

C1 C2 

 Set of states S. 

 Actions A: in our case, actions 

are components making a 

probabilitstic decision. 

 The probability of an action 

made by a component only 

depends on its local view: 

For each state s, s’  in S with 

the same local view for 

component A, A(s)=A(s’). 



A different scenario: 
The execution of c will allow an 
alternative choice for a. 

c 

b 
b a 

b 

C1 

C2 

0.5 0.5 

a 

a c 

c 

b 



Reflecting the choices 

c 

b 
b a 

b 

C1 

C2 

0.5 0.5 

a 

a c 

c 

0.5 0.5 

b 

C1 C2 

C1 C2 



How to implement a component based 
system? 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

How to allow at least one component the selection? 

Avoid a centralized (sequential) solution. 

Lock the choices of at least one component. 



The notion of a conflict 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

Transitions of a component are “dependent”, when they share the same 

component, e.g., a and b, or d and b in C1. We say that a and b are in conflict 

and that d and b are sequential. 

Otherwise they are “independent” or “concurrent”. 



The notion of a “confusion” 

h 

d 

c b 

b a g 

f e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

Is a pair of transitions of different components (a, c) such that executing c will 

either add or remove a conflicting choice to a. 



The notion of a “confusion” 

h 

d 

c b 

b a 

g 
f e 

b 
c 

n 

C1 

C2 

Transitions are in “confusion” if they are independent but the execution of one 

can change the alternative choices for the other. 

Symmetric 

confusion: (a,c) 

Transitions are 

independent 

but the 

execution of 

one can 

decrease the 

alternative 

choices for the 

other. Consider 

n and c. 



The notion of a “confusion” 

h 

d 

c b 

b a g 

f e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

Transitions are in “confusion” if they are independent but the execution of one 

can change the alternative choices for the other. 

Asymmetric 

confusion: (n, a) 

Transitions are 

independent but 

the execution of 

one can increase 

the alternative 

choices for the 

other. Executing 

n enables b as 

additional 

alternative to a. 



A “micro scheduler” using 
semaphores 

 First, we need to freeze the local view of components. 
This includes the local state and enabled transitions. 

 Then a component can make a decision based on the 
distribution that depends on its local view. 

 What can make a change to the local view? 
- another component making a different choice about an 
enabled joined transition. 
- due to a symmetric confusion, some joint transitions disabled. 
- due to an asymmetric confusion, some joint transitions 
enabled. 



A “micro scheduler” using 
semaphores 

 Provide semaphores per each component. 

 Provide semaphores per each confusion. 

 In order to make a decision about some choice, a component 
needs to catch the relevant semaphores. 

 Check local view. 

 Catch the semaphores related to components and confusions 
invovled in view. 

 Check that the view has not changed. 

 To prevent deadlocks, number the semaphores and catch them 
in ascending order, release in descending order [Dijkstra]. 



A “micro scheduler” using 
semaphores 

 Optimization: we do no need semaphores for symmetric 
confusions: case would be eliminated by capturing semaphore 
for components. 

 Could alternatively catch semaphores for the components that 
share the locally but not globally enabled transitions . 
Then do not need semaphores for asymmetric confusion. 
But this will reduce concurrency. 



For C2 to move… 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

C1 

C2 

C3 

c is enabeld. Catches semaphores on C2, on C3 and on 
the confusion (d, c).                Why? 



Implementation 

 Components serve in a master – slave mechanism. A slave 
offers updates on locally enabled transitions through shared 
variables and execute its part in a selected transition. 

 Also solves a long-lasting problem on modeling and 
implementing concurrent systems with probabilistic choices 
[Katoen+Peled]. 

 Allows parallelism. 

 No deadlocks. 

 Previous solutions involved allowing only one transition to fire in 
the entire system. 

 Simple to implement (implemented by Ayoub Nouri) using 
standard semaphore operations. 

 If probabilistic choice is not necessary, we can remove 
semaphores for asymmetric confusion. 



Implementation 

 Allows parallelism. 

 Transitions are not necessarily small or simple. Behaves as if 
atomic; linerarizability. 

 No deadlocks. 

 Previous solutions involved allowing only one transition to fire in 
the entire system [Lynch et al]. 

 Simple to implement (implemented with Verimag) using 
standard semaphore operations. 

 If probabilistic choice is not necessary, we can remove 
semaphores for asymmetric confusion. 



Shared transitions 

 Each component sets up a shared flag to 

indicate when a shared transition a is locally 

enabled (and resets when it becomes 

disabled). 

 To check its view, a component needs to 

check which other components that share its 

locally enabled transitions have set up their 

shared flags. 

 Can we eliminate these expensive checks? 



How to eliminate repeated checks for 
enabledness of shared transitions? 

 Can use a synchronizer like α-core (not 

cheap…). 

 Can use « knowledge » to eliminate some of 

the checks; 



What is knowledge? 

 A component X “knows” a property p about the system if every 
(global) state of the system that includes the current local state 
of X, p holds.  

 Joint knowledge of components: when combining their local 
states. More components know together more. 

 Calculate the reachable states that have the same current local 
state of component X. Then check whether these states satisfy 
p.  

 Can be done using model checking techniques, e.g., based on 
BDDs. 



When the left component is in local 
state s, it knows that the middle 
component cannot be in state t. 

s 

h 

d 

c b 

b a g 

f 
e 

a 

k j 

c 

a 

b c 

m 

n 

t 
q 

C1 

C3 

C2 



How to use precalculated 
knowledge? 

 Make a table that tells each component in 

which of their local states the enabledness in 

other components is known. 

 Knowledge is not complete (and often 

sparse). 



History preserving knowledge 

 Can use memory to remember information 

about the history of the system. 

 Then we may « know » much more about what 

happens in other components, as different 

histories diffrentiate between cases. 

 This is expensive. Essentially we need to 

remember the set of global states where the 

system can be, given its local history (a subset 

construction of the global state space) in each 

component. 



Retrospect 

 If probabilistic choice is not necessary, we can 
remove semaphores for asymmetric confusion. 

 In each one of the scheduling mechanisms, there 
are some internal choice that happen. After these 
choices, the set of possibilities available for the 
system is limited;  
if the system is coupled with some observer, it would 
be able to sense the change from the theoretical 
branching structure. 



Conclusions 

 Components based systems can be used as at an 
intermediate design level. 

 Implementing them involves a scheduling 
mechanisms that depends on architecture. 

 For making a probabilistic choices, we need to 
protect the choices by each component. Solves a 
long-lasting problem on modeling and implementing 
concurrent systems with probabilistic choices 
[Katoen+Peled]. 

 The goal is to provide a complete system that can 
be compiled directly on hardware. Scheduling is 
part of the compiled code. 

 


