
Formal Verification of Cyber-Physical
Systems

Pavithra Prabhakar
IMDEA Software Institute

Cyber-Physical Systems Summer School

EIT ICT Labs - PERSYVAL Lab

Grenoble, France

July 09, 2013

Wednesday, July 17, 2013

Cyber-Physical Systems

Computation

Control

Communication

Wednesday, July 17, 2013

Cyber-Physical Systems

Computation

Control

Communication
Sa
fet
y-c
rit
ica
lity

Wednesday, July 17, 2013

February 6, 2010:

Toyota recalls 133,000 Prius vehicles
in the US and 52, 000 in Europe to fix
problems with its anti-lock brake
software

Recalls due to Software Bugs

1990-2000:

200,000 devices affected due to safety
recalls of pacemakers and implantable
cardioverter defibrillators due to
firmware problems.

Wednesday, July 17, 2013

Grand Challenge: Development of high-
confidence Cyber-Physical Systems

Wednesday, July 17, 2013

Model-based Design

Wednesday, July 17, 2013

Model-based Design

Plant

Controller

Wednesday, July 17, 2013

• Model the plant

Model-based Design

Plant

Controller

Wednesday, July 17, 2013

• Model the plant

• Synthesize the controller

Model-based Design

Plant

Controller

Wednesday, July 17, 2013

• Model the plant

• Synthesize the controller

• Simulate/Verify

Model-based Design

Plant

Controller

Wednesday, July 17, 2013

• Model the plant

• Synthesize the controller

• Simulate/Verify

• Implement

Model-based Design

Plant

Controller

Wednesday, July 17, 2013

• Model the plant

• Synthesize the controller

• Simulate/Verify

• Implement

Model-based Design

Elimination of errors early in the design, resulting in more
robust control system, fewer iterations in the development
cycle and reduced development time and cost.

Plant

Controller

Wednesday, July 17, 2013

Reliable design

Plant

Controller

Wednesday, July 17, 2013

• Automated synthesis: Correct-by-construction

Reliable design

Plant

Controller

Wednesday, July 17, 2013

• Automated synthesis: Correct-by-construction

• Automated methods for detecting presence/absence of errors

Reliable design

Plant

Controller

Wednesday, July 17, 2013

• Automated synthesis: Correct-by-construction

• Automated methods for detecting presence/absence of errors

• Simulation/Testing

Reliable design

Plant

Controller

Wednesday, July 17, 2013

• Automated synthesis: Correct-by-construction

• Automated methods for detecting presence/absence of errors

• Simulation/Testing

• Verification

Reliable design

Plant

Controller

Wednesday, July 17, 2013

Verification of Cyber-Physical Systems

Wednesday, July 17, 2013

Hybrid Systems

Systems consisting of mixed discrete-continuous behaviors

Wednesday, July 17, 2013

Highlights

• Modeling and specification

• Overview of safety verification

• Overview of stability verification

• Complexity and computability

• Approximation techniques

• Tools

Wednesday, July 17, 2013

Models

Wednesday, July 17, 2013

Models

• Hybrid Automata [Henzinger et al.]

Wednesday, July 17, 2013

Models

• Hybrid Automata [Henzinger et al.]

• Continuous dynamics: Differential equations

Wednesday, July 17, 2013

Models

• Hybrid Automata [Henzinger et al.]

• Continuous dynamics: Differential equations

• Discrete dynamics: Finite state automata

Wednesday, July 17, 2013

Models

• Hybrid Automata [Henzinger et al.]

• Continuous dynamics: Differential equations

• Discrete dynamics: Finite state automata

• Extensions of process algebra and petri-nets,
differential dynamic logic

Wednesday, July 17, 2013

0 1--1--2 2

Autonomous Car Controller

Wednesday, July 17, 2013

0 1--1--2 2

Go Ahead Turn Right

Out of
the

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x� = x

x� = x

x� = x

Autonomous Car Controller

Wednesday, July 17, 2013

0 1--1--2 2

Guard

Go Ahead Turn Right

Out of
the

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x� = x

x� = x

x� = x

Autonomous Car Controller

Wednesday, July 17, 2013

0 1--1--2 2

Guard

Go Ahead Turn Right

Out of
the

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x� = x

x� = x

x� = x

Flow

Autonomous Car Controller

Wednesday, July 17, 2013

0 1--1--2 2

Guard

Go Ahead Turn Right

Out of
the

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x� = x

x� = x

x� = x

Flow

Invariant

Autonomous Car Controller

Wednesday, July 17, 2013

0 1--1--2 2

Guard

Go Ahead Turn Right

Out of
the

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x� = x

x� = x

x� = x

Reset

Flow

Invariant

Autonomous Car Controller

Wednesday, July 17, 2013

Properties

Wednesday, July 17, 2013

Safety

Properties

Wednesday, July 17, 2013

Safety

• Every execution of the system is error free

Properties

Wednesday, July 17, 2013

Safety

• Every execution of the system is error free

• The car does not go out of the road

Properties

Wednesday, July 17, 2013

Safety

• Every execution of the system is error free

• The car does not go out of the road

Properties

Stability

Wednesday, July 17, 2013

Safety

• Every execution of the system is error free

• The car does not go out of the road

Properties

Stability

• Small perturbations in the initial state or input lead to only
small perturbations in the eventual behavior of the system

Wednesday, July 17, 2013

Safety

• Every execution of the system is error free

• The car does not go out of the road

Properties

Stability

• Small perturbations in the initial state or input lead to only
small perturbations in the eventual behavior of the system

• Small perturbations in the initial orientation of the car will
still keep it inside the road

Wednesday, July 17, 2013

Overview of safety verification

Wednesday, July 17, 2013

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

• Compute one step-successors

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

• Compute one step-successors

• Terminates in a finite number of steps

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

• Compute one step-successors

• Terminates in a finite number of steps

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

• Compute one step-successors

• Terminates in a finite number of steps

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

• Compute one step-successors

• Terminates in a finite number of steps

Finite-state systems & model-checking

Wednesday, July 17, 2013

• Exhaustive state space exploration

• Compute one step-successors

• Terminates in a finite number of steps

Finite-state systems & model-checking

Wednesday, July 17, 2013

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

0, 0 2, 0

0,1• Continuous dynamics - constant
derivative

• Invariants and guards - linear

• Resets - identity

A simple class of hybrid systems

0 < x < 2
y = 0

y = 0

ẋ = 1
ẏ = 2 ẏ = −2

ẋ = 1

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

x+ 2y = 2

x ≥ 0
y ≥ 0

x+ 2y ≤ 2

Wednesday, July 17, 2013

Safety analysis - Reach set computation

0, 0 2, 0

0,1

Wednesday, July 17, 2013

• One-step successor :

• states reached by time evolution
or discrete transition

Safety analysis - Reach set computation

0, 0 2, 0

0,1

Wednesday, July 17, 2013

• One-step successor :

• states reached by time evolution
or discrete transition

Safety analysis - Reach set computation

0, 0 2, 0

0,1

SuccC(X0, x) := ∃t, x0 ∈ X0,

∀0 ≤ t� ≤ t, x0 + at� ∈ Inv

x = x0 + at,

Wednesday, July 17, 2013

• One-step successor :

• states reached by time evolution
or discrete transition

Safety analysis - Reach set computation

0, 0 2, 0

0,1

SuccC(X0, x) := ∃t, x0 ∈ X0,

∀0 ≤ t� ≤ t, x0 + at� ∈ Inv

x = x0 + at,

SuccD(X0, x) := ∃x0 ∈ X0,

x0 ∈ Guard, (x0, x) ∈ Reset

Wednesday, July 17, 2013

• One-step successor :

• states reached by time evolution
or discrete transition

Safety analysis - Reach set computation

0, 0 2, 0

0,1

• first order logic formula with addition

SuccC(X0, x) := ∃t, x0 ∈ X0,

∀0 ≤ t� ≤ t, x0 + at� ∈ Inv

x = x0 + at,

SuccD(X0, x) := ∃x0 ∈ X0,

x0 ∈ Guard, (x0, x) ∈ Reset

Wednesday, July 17, 2013

• One-step successor :

• states reached by time evolution
or discrete transition

Safety analysis - Reach set computation

0, 0 2, 0

0,1

• first order logic formula with addition

• polyhedral set

SuccC(X0, x) := ∃t, x0 ∈ X0,

∀0 ≤ t� ≤ t, x0 + at� ∈ Inv

x = x0 + at,

SuccD(X0, x) := ∃x0 ∈ X0,

x0 ∈ Guard, (x0, x) ∈ Reset

Wednesday, July 17, 2013

Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

Safety analysis - Reach set computation

Wednesday, July 17, 2013

• Iterate till termination - need a check for termination - equivalence
between sets

Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

Safety analysis - Reach set computation

Wednesday, July 17, 2013

• Iterate till termination - need a check for termination - equivalence
between sets

Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

0, 0 2, 0

0,1

Safety analysis - Reach set computation

Wednesday, July 17, 2013

• Iterate till termination - need a check for termination - equivalence
between sets

Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

• Terminates for some subclasses - Timed automata [Lecture on Friday -
David & Larsen]

0, 0 2, 0

0,1

Safety analysis - Reach set computation

Wednesday, July 17, 2013

• Iterate till termination - need a check for termination - equivalence
between sets

Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

• Terminates for some subclasses - Timed automata [Lecture on Friday -
David & Larsen]

• Reach set up to a given bound on the number of discrete transitions can be
computed

0, 0 2, 0

0,1

Safety analysis - Reach set computation

Wednesday, July 17, 2013

Polyhedral Linear Systems

Wednesday, July 17, 2013

Polyhedral Linear Systems

• Generalized to polyhedral hybrid systems

Wednesday, July 17, 2013

Polyhedral Linear Systems

• Generalized to polyhedral hybrid systems

• Invariants, Guards - linear constraints

Wednesday, July 17, 2013

Polyhedral Linear Systems

• Generalized to polyhedral hybrid systems

• Invariants, Guards - linear constraints

• Resets - linear map

Wednesday, July 17, 2013

Polyhedral Linear Systems

• Generalized to polyhedral hybrid systems

• Invariants, Guards - linear constraints

• Resets - linear map

• Dynamics - linear constraint over dotted variables

Wednesday, July 17, 2013

Polyhedral Linear Systems

• Generalized to polyhedral hybrid systems

• Invariants, Guards - linear constraints

• Resets - linear map

• Dynamics - linear constraint over dotted variables

• Reachability analysis tools: HYTECH, PHAVER

Wednesday, July 17, 2013

Safety verification primitives

Wednesday, July 17, 2013

Safety verification primitives

• Effective representation of one step continuous successor

Wednesday, July 17, 2013

Safety verification primitives

• Effective representation of one step continuous successor

• Intersection with guards and resets

Wednesday, July 17, 2013

Safety verification primitives

• Effective representation of one step continuous successor

• Intersection with guards and resets

• Emptiness checking after intersection with the unsafe set

Wednesday, July 17, 2013

Safety verification primitives

• Effective representation of one step continuous successor

• Intersection with guards and resets

• Emptiness checking after intersection with the unsafe set

• Sets represents by polyhedral sets or formulas over first-order logic

• Emptiness checking reduces to satisfiability problem of the logic

• Satisfiability of first order logic with addition and
multiplication is decidable.

Wednesday, July 17, 2013

A more complex class

Wednesday, July 17, 2013

A more complex class

ẋ(t) = ax(t)Linear Dynamical System

Wednesday, July 17, 2013

A more complex class

x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Wednesday, July 17, 2013

A more complex class

d

dt
x(t) = aeatx(0) = ax(t)

x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Wednesday, July 17, 2013

A more complex class

d

dt
x(t) = aeatx(0) = ax(t)

x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Linear Dynamical System
˙̄x(t) = Ax̄(t), x̄0 ∈ X ⊆ Rn

Wednesday, July 17, 2013

A more complex class

d

dt
x(t) = aeatx(0) = ax(t)

x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Linear Dynamical System
˙̄x(t) = Ax̄(t), x̄0 ∈ X ⊆ Rn

Closed form solution
x̄(t) = eAtx̄(0)

Wednesday, July 17, 2013

A more complex class

d

dt
x(t) = aeatx(0) = ax(t)

x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Linear Dynamical System
˙̄x(t) = Ax̄(t), x̄0 ∈ X ⊆ Rn

Closed form solution
x̄(t) = eAtx̄(0)

ey = 1 + y +
y2

2!
+

y3

3!
+ · · ·

Wednesday, July 17, 2013

A more complex class

d

dt
x(t) = aeatx(0) = ax(t)

x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Linear Dynamical System
˙̄x(t) = Ax̄(t), x̄0 ∈ X ⊆ Rn

Closed form solution
x̄(t) = eAtx̄(0)

eB = 1 +B +
B2

2!
+

B3

3!
+ · · ·ey = 1 + y +

y2

2!
+

y3

3!
+ · · ·

Wednesday, July 17, 2013

One-step successor for linear systems

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into
time steps

∆

∆

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into
time steps

∆

∆

2. Evaluate the function at
time steps to obtain a piecewise

linear approximation

∆

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into
time steps

∆

∆

2. Evaluate the function at
time steps to obtain a piecewise

linear approximation

∆

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into
time steps

∆

∆

2. Evaluate the function at
time steps to obtain a piecewise

linear approximation

∆

3. Compute a bound on the error
of approximation and expand

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into
time steps

∆

∆

2. Evaluate the function at
time steps to obtain a piecewise

linear approximation

∆

3. Compute a bound on the error
of approximation and expand

Wednesday, July 17, 2013

One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into
time steps

∆

∆

2. Evaluate the function at
time steps to obtain a piecewise

linear approximation

∆

3. Compute a bound on the error
of approximation and expand

4. Enclose in a data-
structure

Wednesday, July 17, 2013

One-step successor for linear systems

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

• Number of intervals

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

• Number of intervals

• The data structure enclosing each step

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

• Number of intervals

• The data structure enclosing each step

• Data structures

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

• Number of intervals

• The data structure enclosing each step

• Data structures

• Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski,
Varaiya], Zonotopes [Girard, Guernic]

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

• Number of intervals

• The data structure enclosing each step

• Data structures

• Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski,
Varaiya], Zonotopes [Girard, Guernic]

• Varying time step algorithms

Wednesday, July 17, 2013

One-step successor for linear systems

• Complexity of further verification

• Intersection computation and emptiness checking

• Size and shape of the sets

• Number of intervals

• The data structure enclosing each step

• Data structures

• Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski,
Varaiya], Zonotopes [Girard, Guernic]

• Varying time step algorithms

• Approximate flow computation [P,Viswanathan],SpaceEx[Frehse et al.]

Wednesday, July 17, 2013

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

Wednesday, July 17, 2013

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

Wednesday, July 17, 2013

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

Wednesday, July 17, 2013

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

Wednesday, July 17, 2013

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

Wednesday, July 17, 2013

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

Wednesday, July 17, 2013

What about non-linear systems?

ẋ = f(x)

x ∈ X0 ⊆ Rn

Wednesday, July 17, 2013

What about non-linear systems?

ẋ = f(x)

x ∈ X0 ⊆ Rn

Closed form of the solutions do not exist in general!

Wednesday, July 17, 2013

What about non-linear systems?

ẋ = f(x)

x ∈ X0 ⊆ Rn

Closed form of the solutions do not exist in general!

• Hybridization [Puri, Borkar, Varaiya], [Asarin,Dang,Girard]

• Finite partition of the state-space.

• Approximate dynamics using the right hand side of the
differential equation.

Wednesday, July 17, 2013

Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Wednesday, July 17, 2013

Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Wednesday, July 17, 2013

Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a rectangular approximation
of in each cellf(x)

Wednesday, July 17, 2013

Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a rectangular approximation
of in each cellf(x)

ẋ1 ∈ [l1, u1]

ẋ2 ∈ [l2, u2]

Wednesday, July 17, 2013

Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Maximizef1(x1, x2)

a ≤ x1 ≤ b

c ≤ x2 ≤ d

(a, c)

(b, d)

Find a rectangular approximation
of in each cellf(x)

ẋ1 ∈ [l1, u1]

ẋ2 ∈ [l2, u2]

Wednesday, July 17, 2013

Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Wednesday, July 17, 2013

Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Wednesday, July 17, 2013

Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a linear function which
interpolates f(x) at the vertices

Wednesday, July 17, 2013

Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a linear function which
interpolates f(x) at the vertices

Wednesday, July 17, 2013

Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Bounded error approximation in
a finite time interval by choosing
small enough cells, for Lipschitz
continuous functions

(a, c)

(b, d)

Find a linear function which
interpolates f(x) at the vertices

Wednesday, July 17, 2013

What about approximations for infinite time?

Wednesday, July 17, 2013

• Finite time

• Bounded error approximation

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

Wednesday, July 17, 2013

• Finite time

• Bounded error approximation

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems

Wednesday, July 17, 2013

• Finite time

• Bounded error approximation

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems

• Hybridization

Wednesday, July 17, 2013

• Finite time

• Bounded error approximation

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems

• Hybridization

• Predicate Abstraction [Alur et al], [Tiwari]

Wednesday, July 17, 2013

• Finite time

• Bounded error approximation

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems

• Hybridization

• Predicate Abstraction [Alur et al], [Tiwari]

• In general, no bound on the error

Wednesday, July 17, 2013

• Finite time

• Bounded error approximation

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems

• Hybridization

• Predicate Abstraction [Alur et al], [Tiwari]

• In general, no bound on the error

• Refine based on a counter-example

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

For every trajectory of the robot, there is a
corresponding path in the abstract graph

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Right abstractions hard to find!

Abstraction

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Refine the abstraction

Refinement

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Refine the abstraction

Refinement

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Refine the abstraction

Refinement

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Refine the abstraction

Refinement

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Refine the abstraction

Refinement

Wednesday, July 17, 2013

21 3

4 5 6

7 8 9

4

2 3

5 6

8 9

4

1

7

Refine the abstraction

Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Concrete
System

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Concrete
System

Abstract
System

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Concrete
System

Abstract
System

Property

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies
the property!!

Concrete
System

Abstract
System

Property

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies
the property!!

No

Concrete
System

Abstract
System

Property

Abstract
Counterexample

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies
the property!!

No

Concrete
System

Abstract
System

Property

Abstract
Counterexample

Yes

Concrete counterexample!

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies
the property!!

No

Concrete
System

Abstract
System

Property

Abstract
Counterexample

Yes

Concrete counterexample!

No

Analysis

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies
the property!!

No

Concrete
System

Abstract
System

Property

Abstract
Counterexample

Yes

Concrete counterexample!

No

Abstraction
Relation

Analysis

Counter-Example Guided Abstraction
Refinement

Wednesday, July 17, 2013

Related Work

• Software Verification [Kurshan et al. 93], [Clarke et al. 00], [Ball et al. 02]

• SLAM, BLAST

• Discrete CEGAR for hybrid systems [Alur et al. 03], [Clarke et al. 03]

• Hybrid CEGAR for hybrid systems [P.,Duggirala,Mitra,Viswanathan],
[Dierks, Kupferschmid, Larsen])

Wednesday, July 17, 2013

Complexity of Continuous Dynamics

C
om

pl
ex

ity
 o

f V
er

ifi
ca

tio
n

FS
M

Summary of safety verification

Wednesday, July 17, 2013

Complexity of Continuous Dynamics

C
om

pl
ex

ity
 o

f V
er

ifi
ca

tio
n

FS
M

ẋ = 1

TI
M

E
D

Summary of safety verification

Wednesday, July 17, 2013

Complexity of Continuous Dynamics

C
om

pl
ex

ity
 o

f V
er

ifi
ca

tio
n

FS
M

ẋ = 1

TI
M

E
D

Summary of safety verification

Exponential

Wednesday, July 17, 2013

Complexity of Continuous Dynamics

C
om

pl
ex

ity
 o

f V
er

ifi
ca

tio
n

FS
M

ẋ = 1

TI
M

E
D

R
E

C
TA

N
G

U
LA

R

ẋ ∈ [a, b]

Summary of safety verification

Exponential

Wednesday, July 17, 2013

Complexity of Continuous Dynamics

C
om

pl
ex

ity
 o

f V
er

ifi
ca

tio
n

FS
M

ẋ = 1

TI
M

E
D

R
E

C
TA

N
G

U
LA

R

ẋ ∈ [a, b]

Summary of safety verification

Exponential

Undecidable

Wednesday, July 17, 2013

Complexity of Continuous Dynamics

C
om

pl
ex

ity
 o

f V
er

ifi
ca

tio
n

FS
M

ẋ = 1

TI
M

E
D

R
E

C
TA

N
G

U
LA

R

ẋ ∈ [a, b]

Summary of safety verification

Exponential

Undecidable

ẋ = Ax

LI
N

E
A

R
 (S

pa
ce

E
x)

N
O

N
-L

IN
E

A
R

 (F
lo

w
*)

ẋ = f(x)

One step successor
computation hard

Wednesday, July 17, 2013

Overview of stability verification

Wednesday, July 17, 2013

Stability

Small changes to the initial state of the system result in small
changes to the behavior of the system

• The controlled behavior of the car depends gracefully on small
variations to its starting orientation

Wednesday, July 17, 2013

Stability in a pendulum

Wednesday, July 17, 2013

Stability in a pendulum

Wednesday, July 17, 2013

Stability in a pendulum

Wednesday, July 17, 2013

Stability in a pendulum

Stable Equilibrium

Wednesday, July 17, 2013

Stability in a pendulum

Stable Equilibrium

Wednesday, July 17, 2013

Stability in a pendulum

Stable Equilibrium

Wednesday, July 17, 2013

Stability in a pendulum

Stable Equilibrium

Wednesday, July 17, 2013

Stability in a pendulum

Stable Equilibrium Unstable Equilibrium

Wednesday, July 17, 2013

Lyapunov stability

0

Wednesday, July 17, 2013

�

Lyapunov stability

0

Wednesday, July 17, 2013

�

Lyapunov stability

δ

0

Wednesday, July 17, 2013

�

Lyapunov stability

δ

0

Wednesday, July 17, 2013

�

Lyapunov stability

δ

0

∀� > 0 ∃δ > 0 [(σ(0) ∈ Bδ(0)) ⇒ ∀t(σ(t) ∈ B�(0))]

Wednesday, July 17, 2013

�

Lyapunov stability

δ

0

“Continuity of the transition relation at the origin”

∀� > 0 ∃δ > 0 [(σ(0) ∈ Bδ(0)) ⇒ ∀t(σ(t) ∈ B�(0))]

Wednesday, July 17, 2013

Asymptotic stability

0

“Lyapunov stability + Convergence”

Wednesday, July 17, 2013

δ

Asymptotic stability

0

“Lyapunov stability + Convergence”

Wednesday, July 17, 2013

δ

Asymptotic stability

0

“Lyapunov stability + Convergence”

Wednesday, July 17, 2013

δ

Asymptotic stability

0

“Lyapunov stability + Convergence”

Converge(σ, 0) ≡ ∀� > 0, ∃T ≥ 0,σ(t) ∈ B�(0), ∀t ≥ T

∃δ > 0 [(σ(0) ∈ Bδ(0)) ⇒ Converge(σ, 0)]

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

If a is negative, x(t) converges to 0

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

If a is negative, x(t) converges to 0

If a is positive, x(t) diverges

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

If a is negative, x(t) converges to 0

If a is positive, x(t) diverges

If a is 0, x(t) is always x(0)

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

1 0 0
0 2 0
0 0 3

x1

x2

x3

ẋ1

ẋ2

ẋ3

=

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

Eigen value: λ such that there exists x �= 0 with Ax = λx

1 0 0
0 2 0
0 0 3

x1

x2

x3

ẋ1

ẋ2

ẋ3

=

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

The linear system is stable if

all the eigen values of A have negative real parts

Eigen value: λ such that there exists x �= 0 with Ax = λx

1 0 0
0 2 0
0 0 3

x1

x2

x3

ẋ1

ẋ2

ẋ3

=

Wednesday, July 17, 2013

Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

The linear system is stable if

all the eigen values of A have negative real parts

The linear system is unstable if

A has at least one eigen value with positive real parts

Eigen value: λ such that there exists x �= 0 with Ax = λx

1 0 0
0 2 0
0 0 3

x1

x2

x3

ẋ1

ẋ2

ẋ3

=

Wednesday, July 17, 2013

Non-linear systems

Wednesday, July 17, 2013

Non-linear systems

Lyapunov’s first method - Linearization

Wednesday, July 17, 2013

Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Lyapunov’s first method - Linearization

Wednesday, July 17, 2013

Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

Lyapunov’s first method - Linearization

Wednesday, July 17, 2013

Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

Lyapunov’s first method - Linearization

Wednesday, July 17, 2013

Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

f(x) = x2 + x

A = (2x+ 1)(0) = 1

Lyapunov’s first method - Linearization

Wednesday, July 17, 2013

Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

f(x) = x2 + x

A = (2x+ 1)(0) = 1

Lyapunov’s first method - Linearization

f(x) = x2 − x

A = (2x - 1)(0) = -1

Wednesday, July 17, 2013

Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

If A has is hyperbolic (all eigen values have non-zero real part), then stability
of the original system is equivalent to the stability of the linearization.

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

f(x) = x2 + x

A = (2x+ 1)(0) = 1

Lyapunov’s first method - Linearization

f(x) = x2 − x

A = (2x - 1)(0) = -1

Wednesday, July 17, 2013

Linear Switched Systems

Wednesday, July 17, 2013

Linear Switched Systems

Wednesday, July 17, 2013

Linear Switched Systems

Wednesday, July 17, 2013

Eigen value analysis doesn’t extend to mixed discrete continuous systems

Linear Switched Systems

Wednesday, July 17, 2013

Lyapunov’s Second Method

ẋ = F (x)

F (0) = 0

ϕ(x, t)

System

Equilibrium

Solution

Wednesday, July 17, 2013

Lyapunov’s Second Method

ẋ = F (x)

F (0) = 0

ϕ(x, t)

System

Equilibrium

Solution

If there exists a Lyapunov function for the system,

Wednesday, July 17, 2013

Lyapunov’s Second Method

ẋ = F (x)

F (0) = 0

ϕ(x, t)

System

Equilibrium

Solution

If there exists a Lyapunov function for the system,

then it is Lyapunov stable.

Wednesday, July 17, 2013

Lyapunov function: Illustration

Wednesday, July 17, 2013

Lyapunov function: Illustration

xy

Wednesday, July 17, 2013

Lyapunov function: Illustration

xy

V
Continuously
differentiable

Wednesday, July 17, 2013

Lyapunov function: Illustration

xy

V
Continuously
differentiable

Positive
Definite

Wednesday, July 17, 2013

Lyapunov function: Illustration

xy

V
Continuously
differentiable

Positive
Definite

Value decreases
along any trajectory

Wednesday, July 17, 2013

Lyapunov function

Wednesday, July 17, 2013

Lyapunov function

V : Rn → R+

Continuously differentiable

Wednesday, July 17, 2013

Lyapunov function

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable

Wednesday, July 17, 2013

Lyapunov function

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

• A quadratic Lyapunov
function exists for every
stable linear system

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

• A quadratic Lyapunov
function exists for every
stable linear system

• It can be computed by
solving a linear matrix
inequality

Wednesday, July 17, 2013

Lyapunov function: Example

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

• A quadratic Lyapunov
function exists for every
stable linear system

• It can be computed by
solving a linear matrix
inequality

• Such complete results do not
exist for non-linear systems
or hybrid systems (even in
the linear case)

Wednesday, July 17, 2013

Lyapunov functions for hybrid systems

Wednesday, July 17, 2013

Lyapunov functions for hybrid systems

• Common Lyapunov function - a function which is a
Lyapunov function for each mode of the system

Wednesday, July 17, 2013

Lyapunov functions for hybrid systems

• Common Lyapunov function - a function which is a
Lyapunov function for each mode of the system

• Multiple Lyapunov function - a function for each
mode along with certain conditions that need to be
satisfied at the switching

Wednesday, July 17, 2013

Lyapunov functions for hybrid systems

• Common Lyapunov function - a function which is a
Lyapunov function for each mode of the system

• Multiple Lyapunov function - a function for each
mode along with certain conditions that need to be
satisfied at the switching

• Reference: Switching in Systems and Control - Daniel
Liberzon

Wednesday, July 17, 2013

Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0

Wednesday, July 17, 2013

Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable Polynomial
Template

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0

Wednesday, July 17, 2013

Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable Polynomial
Template

Check if there exist coefficients
for which the polynomial is a

sum-of-squares (SOS)

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0

Wednesday, July 17, 2013

Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable Polynomial
Template

Check if there exist coefficients
for which the polynomial is a

sum-of-squares (SOS)

Express again as a sum-
of-squares constraint

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0

Wednesday, July 17, 2013

Abstraction refinement for stability

Wednesday, July 17, 2013

Abstraction refinement for stability

• An abstraction refinement framework for a
systematic proof search

Wednesday, July 17, 2013

Abstraction refinement for stability

• An abstraction refinement framework for a
systematic proof search

• Notions of abstraction not well-studied

Wednesday, July 17, 2013

Abstraction refinement for stability

• An abstraction refinement framework for a
systematic proof search

• Notions of abstraction not well-studied

• Do the discrete abstraction techniques for safety
work? No!

Wednesday, July 17, 2013

Abstraction refinement for stability

• An abstraction refinement framework for a
systematic proof search

• Notions of abstraction not well-studied

• Do the discrete abstraction techniques for safety
work? No!

• Modified predicate abstraction

Wednesday, July 17, 2013

Piecewise Constant Derivative System

p2

p1p3

p4

(-1, 1)(-1, -1)

(1, -1) (1, 1)

Wednesday, July 17, 2013

Piecewise Constant Derivative System

p2

p1p3

p4

(-1, 1)(-1, -1)

(1, -1) (1, 1)

Wednesday, July 17, 2013

Piecewise Constant Derivative System

p2

p1p3

p4

(-1, 1)(-1, -1)

(1, -1) (1, 1)

Lyapunov stable, but not asymptotically stable

Wednesday, July 17, 2013

p2

p1p3

p4

(-1, 1)(-1/2, -1)

(1, -1) (1/2, 1)

Piecewise Constant Derivative System

Wednesday, July 17, 2013

p2

p1p3

p4

(-1, 1)(-1/2, -1)

(1, -1) (1/2, 1)

Piecewise Constant Derivative System

Wednesday, July 17, 2013

p2

p1p3

p4

(-1, 1)(-1/2, -1)

(1, -1) (1/2, 1)

Lyapunov stable and asymptotically stable

Piecewise Constant Derivative System

Wednesday, July 17, 2013

p2

p1p3

p4

(-1, 1)(-2, -1)

(1, -1) (2, 1)

Piecewise Constant Derivative System

Wednesday, July 17, 2013

p2

p1p3

p4

(-1, 1)(-2, -1)

(1, -1) (2, 1)

Piecewise Constant Derivative System

Wednesday, July 17, 2013

p2

p1p3

p4

(-1, 1)(-2, -1)

(1, -1) (2, 1)

Neither Lyapunov stable nor asymptotically stable

Piecewise Constant Derivative System

Wednesday, July 17, 2013

Stability Analysis: Graph Construction

A

BC

D

E F

p1
p2

p3

p4

p5
p6

Wednesday, July 17, 2013

Stability Analysis: Graph Construction

A

BC

D

E F

p1
p2

p3

p4

p5
p6

p1p2

p3

p4 p5

p6

Wednesday, July 17, 2013

Stability Analysis: Graph Construction

A

BC

D

E F

p1
p2

p3

p4

p5
p6

p1p2

p3

p4 p5

p6

Wednesday, July 17, 2013

Stability Analysis: Graph Construction

A

BC

D

E F

Capture information about distance to the origin along the executions

p1
p2

p3

p4

p5
p6

p1p2

p3

p4 p5

p6

Wednesday, July 17, 2013

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

p1
p2

Wednesday, July 17, 2013

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

p1
p2

Wednesday, July 17, 2013

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

d1
d2

p1
p2

Wednesday, July 17, 2013

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

d1
d2

w(e) =
|d2|
|d1|

p1
p2

Wednesday, July 17, 2013

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

�b

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

�b

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

�b

|�b|
|�a|

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

�b

|�b|
|�a|

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

�b

|�b|
|�a|

Wednesday, July 17, 2013

x

y

z

Weight computation

p1

d1
d2

w(e) =
|d2|
|d1|

p2

�a

�b

|�b|
|�a|

|�b+�c|
|�a+�c|

Wednesday, July 17, 2013

Stability Analysis: Weighted graph

A

BC

D

E F

p1
p2

p3

p4

p5
p6

w1

w2

w3

w4

w5

w6

p1p2

p3

p4 p5

p6

Wednesday, July 17, 2013

Stability Analysis: Weighted graph

A

BC

D

E F

p1
p2

p3

p4

p5
p6

w1

w2

w3

w4

w5

w6

p1p2

p3

p4 p5

p6

Wednesday, July 17, 2013

Stability Analysis: Weighted graph

A

BC

D

E F

p1
p2

p3

p4

p5
p6

w1

w2

w3

w4

w5

w6

p1p2

p3

p4 p5

p6

σ = σ(pi1pi2)σ(pi2pi3) · · ·σ(pin−1pin)

Wednesday, July 17, 2013

Stability Analysis: Weighted graph

A

BC

D

E F

p1
p2

p3

p4

p5
p6

w1

w2

w3

w4

w5

w6

p1p2

p3

p4 p5

p6

σ = σ(pi1pi2)σ(pi2pi3) · · ·σ(pin−1pin)

w(σ) =
d(σ(T))

d(σ(0))

Wednesday, July 17, 2013

Stability Analysis: Weighted graph

A

BC

D

E F

p1
p2

p3

p4

p5
p6

w1

w2

w3

w4

w5

w6

p1p2

p3

p4 p5

p6

σ = σ(pi1pi2)σ(pi2pi3) · · ·σ(pin−1pin)

= w(ei1,i2)w(ei2,i3) · · ·w(ein−1,in)w(σ) =
d(σ(T))

d(σ(0))

Wednesday, July 17, 2013

Stability Analysis: Example 1

p2

p1p3

p4

(-1, 1)(-1, -1)

(1, -1) (1, 1)

Lyapunov stable, but not asymptotically stable

Wednesday, July 17, 2013

Stability Analysis: Example 1

p2

p1p3

p4

(-1, 1)(-1, -1)

(1, -1) (1, 1)

p1

p2

p3

p4

11

1 1

Lyapunov stable, but not asymptotically stable

Wednesday, July 17, 2013

Stability Analysis: Example 2

p2

p1p3

p4

(-1, 1)(-1/2, -1)

(1, -1) (1/2, 1)

Lyapunov stable and asymptotically stable

Wednesday, July 17, 2013

Stability Analysis: Example 2

p2

p1p3

p4

(-1, 1)(-1/2, -1)

(1, -1) (1/2, 1)

p1

p2

p3

p4

11/2

1 1/2

Lyapunov stable and asymptotically stable

Wednesday, July 17, 2013

Stability Analysis: Example 3

p2

p1p3

p4

(-1, 1)(-2, -1)

(1, -1) (2, 1)

Neither Lyapunov stable nor asymptotically stable

Wednesday, July 17, 2013

Stability Analysis: Example 3

p2

p1p3

p4

(-1, 1)(-2, -1)

(1, -1) (2, 1)

p1

p2

p3

p4

12

1 2

Neither Lyapunov stable nor asymptotically stable

Wednesday, July 17, 2013

Stability Analysis: PCD

Theorem: (Lyapunov stability)

A Piecewise Constant Derivative System is Lyapunov stable
if

the weighted graph does not contain any cycles with the product
of weights > 1

Wednesday, July 17, 2013

Stability Analysis: PCD

Theorem: (Lyapunov stability)

A Piecewise Constant Derivative System is Lyapunov stable
if

the weighted graph does not contain any cycles with the product
of weights > 1

Theorem: (Asymptotic stability)

A Piecewise Constant Derivative System is asymptotically stable
if

the weighted graph does not contain any cycles with the product
of weights >= 1

Wednesday, July 17, 2013

SummaryStability Analysis Tools

Wednesday, July 17, 2013

SummaryStability Analysis Tools

• SOSTOOLS - Sum-of-squares programming

Wednesday, July 17, 2013

SummaryStability Analysis Tools

• SOSTOOLS - Sum-of-squares programming

• LMI solvers - CVX

Wednesday, July 17, 2013

SummaryStability Analysis Tools

• SOSTOOLS - Sum-of-squares programming

• LMI solvers - CVX

• Stability Analysis: Stabhyli

Wednesday, July 17, 2013

SummarySummary

• Hybrid Systems verification is challenging

• Undecidable for simple subclasses

• Standard techniques from the purely discrete and
continuous worlds do not extend in a straightforward
manner

• Model-checking & Deductive verification

• Approximation techniques

• Safety - Predicate abstraction & CEGAR, hybridization

• Stability - Linearization, Predicate abstraction

Wednesday, July 17, 2013

Some research directions

• Scalability

• Efficient data structures

• Approximation methods

• Compositional analysis

• Applications

• Exploiting structures

• Bridging the gap between model and implementation

Wednesday, July 17, 2013

