Formal Verification of Cyber-Physical Systems

Pavithra Prabhakar
IMDEA Software Institute

Cyber-Physical Systems Summer School
EIT ICT Labs - PERSYVAL Lab
Grenoble, France
July 09, 2013

Cyber-Physical Systems

Computation

Control
Communication

Cyber-Physical Systems

Recalls due to Software Bugs

February 6, 2010:
Toyota recalls 133,000 Prius vehicles in the US and 52, 000 in Europe to fix problems with its anti-lock brake software

1990-2000:
200,000 devices affected due to safety recalls of pacemakers and implantable cardioverter defibrillators due to firmware problems.

Grand Challenge: Development of highconfidence Cyber-Physical Systems

Model-based Design

Model-based Design

Model-based Design

- Model the plant

Model-based Design

- Model the plant
- Synthesize the controller

Model-based Design

- Model the plant
- Synthesize the controller
- Simulate/Verify

Model-based Design

- Model the plant
- Synthesize the controller
- Simulate/Verify

- Implement

Model-based Design

- Model the plant
- Synthesize the controller
- Simulate/Verify

- Implement

Elimination of errors early in the design, resulting in more robust control system, fewer iterations in the development cycle and reduced development time and cost.

Reliable design

Reliable design

- Automated synthesis: Correct-by-construction

Reliable design

- Automated synthesis: Correct-by-construction
- Automated methods for detecting presence/absence of errors

Reliable design

- Automated synthesis: Correct-by-construction
- Automated methods for detecting presence/absence of errors
- Simulation/Testing

Reliable design

- Automated synthesis: Correct-by-construction
- Automated methods for detecting presence/absence of errors
- Simulation/Testing
- Verification

Verification of Cyber-Physical Systems

Hybrid Systems

Systems consisting of mixed discrete-continuous behaviors

Highlights

- Modeling and specification
- Overview of safety verification
- Overview of stability verification
- Complexity and computability
- Approximation techniques
- Tools

Models

Models

- Hybrid Automata [Henzinger et al.]

Models

- Hybrid Automata [Henzinger et al.]
- Continuous dynamics: Differential equations

Models

- Hybrid Automata [Henzinger et al.]
- Continuous dynamics: Differential equations
- Discrete dynamics: Finite state automata

Models

- Hybrid Automata [Henzinger et al.]
- Continuous dynamics: Differential equations
- Discrete dynamics: Finite state automata
- Extensions of process algebra and petri-nets, differential dynamic logic

Autonomous Car Controller

Properties

Properties

Safety

Properties

Safety

- Every execution of the system is error free

Properties

Safety

- Every execution of the system is error free
- The car does not go out of the road

Properties

Safety

- Every execution of the system is error free
- The car does not go out of the road

Stability

Properties

Safety

- Every execution of the system is error free
- The car does not go out of the road

Stability

- Small perturbations in the initial state or input lead to only small perturbations in the eventual behavior of the system

Properties

Safety

- Every execution of the system is error free
- The car does not go out of the road

Stability

- Small perturbations in the initial state or input lead to only small perturbations in the eventual behavior of the system
- Small perturbations in the initial orientation of the car will still keep it inside the road

Overview of safety verification

Finite-state systems \& model-checking

Finite-state systems \& model-checking

- Exhaustive state space exploration

Finite-state systems \& model-checking

- Exhaustive state space exploration
- Compute one step-successors

Finite-state systems \& model-checking

- Exhaustive state space exploration
- Compute one step-successors
- Terminates in a finite number of steps

Finite-state systems \& model-checking

- Exhaustive state space exploration
- Compute one step-successors
- Terminates in a finite number of steps

Finite-state systems \& model-checking

- Exhaustive state space exploration
- Compute one step-successors
- Terminates in a finite number of steps

Finite-state systems \& model-checking

- Exhaustive state space exploration
- Compute one step-successors
- Terminates in a finite number of steps

Finite-state systems \& model-checking

- Exhaustive state space exploration
- Compute one step-successors
- Terminates in a finite number of steps

A simple class of hybrid systems

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

A simple class of hybrid systems

- Continuous dynamics - constant derivative
- Invariants and guards - linear
- Resets - identity

Safety analysis - Reach set computation

Safety analysis - Reach set computation

- One-step successor :
- states reached by time evolution or discrete transition

Safety analysis - Reach set computation

$$
\begin{gathered}
\operatorname{Succ}_{C}\left(X_{0}, x\right):=\exists t, x_{0} \in X_{0}, \\
x=x_{0}+a t, \\
\forall 0 \leq t^{\prime} \leq t, x_{0}+a t^{\prime} \in I n v
\end{gathered}
$$

- One-step successor :
- states reached by time evolution or discrete transition

Safety analysis - Reach set computation

$$
\begin{gathered}
\operatorname{Succ}_{C}\left(X_{0}, x\right):=\exists t, x_{0} \in X_{0} \\
x=x_{0}+a t \\
\forall 0 \leq t^{\prime} \leq t, x_{0}+a t^{\prime} \in I n v
\end{gathered}
$$

- One-step successor :
- states reached by time evolution or discrete transition

$$
\begin{aligned}
& \operatorname{Succ}_{D}\left(X_{0}, x\right):=\exists x_{0} \in X_{0} \\
& x_{0} \in \text { Guard, }\left(x_{0}, x\right) \in \text { Reset }
\end{aligned}
$$

Safety analysis - Reach set computation

- One-step successor :
- states reached by time evolution or discrete transition
- first order logic formula with addition

$$
\begin{gathered}
\operatorname{Succ}_{C}\left(X_{0}, x\right):=\exists t, x_{0} \in X_{0} \\
x=x_{0}+a t \\
\forall 0 \leq t^{\prime} \leq t, x_{0}+a t^{\prime} \in I n v
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Succ}_{D}\left(X_{0}, x\right):=\exists x_{0} \in X_{0} \\
& x_{0} \in \text { Guard, }\left(x_{0}, x\right) \in \text { Reset }
\end{aligned}
$$

Safety analysis - Reach set computation

- One-step successor :
- states reached by time evolution or discrete transition
- first order logic formula with addition
- polyhedral set

$$
\begin{gathered}
\operatorname{Succ}_{C}\left(X_{0}, x\right):=\exists t, x_{0} \in X_{0} \\
x=x_{0}+a t \\
\forall 0 \leq t^{\prime} \leq t, x_{0}+a t^{\prime} \in I n v
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Succ}_{D}\left(X_{0}, x\right):=\exists x_{0} \in X_{0} \\
& x_{0} \in \text { Guard, }\left(x_{0}, x\right) \in \text { Reset }
\end{aligned}
$$

Safety analysis - Reach set computation

$$
\begin{aligned}
& \operatorname{Reach}^{0}\left(X_{0}\right)=X_{0} \\
& \operatorname{Reach}^{i+1}\left(X_{0}\right)=\operatorname{Reach}^{i}\left(X_{0}\right) \cup \operatorname{Succ}_{D}\left(\operatorname{Succ}_{C}\left(\operatorname{Reach}^{i}\left(X_{0}\right)\right)\right)
\end{aligned}
$$

Safety analysis - Reach set computation

$$
\begin{aligned}
& \operatorname{Reach}^{0}\left(X_{0}\right)=X_{0} \\
& \operatorname{Reach}^{i+1}\left(X_{0}\right)=\operatorname{Reach}^{i}\left(X_{0}\right) \cup \operatorname{Succ}_{D}\left(\operatorname{Succ}_{C}\left(\operatorname{Reach}^{i}\left(X_{0}\right)\right)\right)
\end{aligned}
$$

- Iterate till termination - need a check for termination - equivalence between sets

Safety analysis - Reach set computation

$$
\begin{aligned}
& \operatorname{Reach}^{0}\left(X_{0}\right)=X_{0} \\
& \operatorname{Reach}^{i+1}\left(X_{0}\right)=\operatorname{Reach}^{i}\left(X_{0}\right) \cup \operatorname{Succ}_{D}\left(\operatorname{Succ}_{C}\left(\operatorname{Reach}^{i}\left(X_{0}\right)\right)\right)
\end{aligned}
$$

- Iterate till termination - need a check for termination - equivalence between sets

Safety analysis - Reach set computation

$$
\begin{aligned}
& \operatorname{Reach}^{0}\left(X_{0}\right)=X_{0} \\
& \operatorname{Reach}^{i+1}\left(X_{0}\right)=\operatorname{Reach}^{i}\left(X_{0}\right) \cup \operatorname{Succ}_{D}\left(\operatorname{Succ}_{C}\left(\operatorname{Reach}^{i}\left(X_{0}\right)\right)\right)
\end{aligned}
$$

- Iterate till termination - need a check for termination - equivalence between sets

- Terminates for some subclasses - Timed automata [Lecture on Friday David \& Larsen]

Safety analysis - Reach set computation

$$
\begin{aligned}
& \operatorname{Reach}^{0}\left(X_{0}\right)=X_{0} \\
& \operatorname{Reach}^{i+1}\left(X_{0}\right)=\operatorname{Reach}^{i}\left(X_{0}\right) \cup \operatorname{Succ}_{D}\left(\operatorname{Succ}_{C}\left(\operatorname{Reach}^{i}\left(X_{0}\right)\right)\right)
\end{aligned}
$$

- Iterate till termination - need a check for termination - equivalence between sets

- Terminates for some subclasses - Timed automata [Lecture on Friday David \& Larsen]
- Reach set up to a given bound on the number of discrete transitions can be computed

Polyhedral Linear Systems

Polyhedral Linear Systems

- Generalized to polyhedral hybrid systems

Polyhedral Linear Systems

- Generalized to polyhedral hybrid systems
- Invariants, Guards - linear constraints

Polyhedral Linear Systems

- Generalized to polyhedral hybrid systems
- Invariants, Guards - linear constraints
- Resets - linear map

Polyhedral Linear Systems

- Generalized to polyhedral hybrid systems
- Invariants, Guards - linear constraints
- Resets - linear map
- Dynamics - linear constraint over dotted variables

Polyhedral Linear Systems

- Generalized to polyhedral hybrid systems
- Invariants, Guards - linear constraints
- Resets - linear map
- Dynamics - linear constraint over dotted variables
- Reachability analysis tools: HYTECH, PHAVER

Safety verification primitives

Safety verification primitives

- Effective representation of one step continuous successor

Safety verification primitives

- Effective representation of one step continuous successor
- Intersection with guards and resets

Safety verification primitives

- Effective representation of one step continuous successor
- Intersection with guards and resets
- Emptiness checking after intersection with the unsafe set

Safety verification primitives

- Effective representation of one step continuous successor
- Intersection with guards and resets
- Emptiness checking after intersection with the unsafe set
- Sets represents by polyhedral sets or formulas over first-order logic
- Emptiness checking reduces to satisfiability problem of the logic
- Satisfiability of first order logic with addition and multiplication is decidable.

A more complex class

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$

Closed form solution $\quad x(t)=e^{a t} x(0)$

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$
Closed form solution

$$
\begin{aligned}
& x(t)=e^{a t} x(0) \\
& \frac{d}{d t} x(t)=a e^{a t} x(0)=a x(t)
\end{aligned}
$$

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$
Closed form solution

$$
\begin{aligned}
& x(t)=e^{a t} x(0) \\
& \frac{d}{d t} x(t)=a e^{a t} x(0)=a x(t)
\end{aligned}
$$

Linear Dynamical System

$$
\dot{\bar{x}}(t)=A \bar{x}(t), \bar{x}_{0} \in X \subseteq \mathbb{R}^{n}
$$

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$
Closed form solution

$$
\begin{aligned}
& x(t)=e^{a t} x(0) \\
& \frac{d}{d t} x(t)=a e^{a t} x(0)=a x(t)
\end{aligned}
$$

Linear Dynamical System

$$
\dot{\bar{x}}(t)=A \bar{x}(t), \bar{x}_{0} \in X \subseteq \mathbb{R}^{n}
$$

Closed form solution

$$
\bar{x}(t)=e^{A t} \bar{x}(0)
$$

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$
Closed form solution

$$
\begin{aligned}
x(t) & =e^{a t} x(0) \\
\frac{d}{d t} x(t) & =a e^{a t} x(0)=a x(t)
\end{aligned}
$$

Linear Dynamical System

$$
\dot{\bar{x}}(t)=A \bar{x}(t), \bar{x}_{0} \in X \subseteq \mathbb{R}^{n}
$$

$$
e^{y}=1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\cdots
$$

Closed form solution

$$
\bar{x}(t)=e^{A t} \bar{x}(0)
$$

A more complex class

Linear Dynamical System $\dot{x}(t)=a x(t)$
Closed form solution

$$
\begin{aligned}
& x(t)=e^{a t} x(0) \\
& \frac{d}{d t} x(t)=a e^{a t} x(0)=a x(t)
\end{aligned}
$$

Linear Dynamical System

$$
\dot{\bar{x}}(t)=A \bar{x}(t), \bar{x}_{0} \in X \subseteq \mathbb{R}^{n}
$$

$$
e^{y}=1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\cdots
$$

$$
e^{B}=1+B+\frac{B^{2}}{2!}+\frac{B^{3}}{3!}+\cdots
$$

One-step successor for linear systems

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

- Satisfiability is not known for first-order logic with exponentiation.
- Approximation of the successor states
- Assumption: Matrix exponential can be computed with arbitrary precision

One-step successor for linear systems

One-step successor for linear systems

- Complexity of further verification

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets
- Number of intervals

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets
- Number of intervals
- The data structure enclosing each step

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets
- Number of intervals
- The data structure enclosing each step
- Data structures

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets
- Number of intervals
- The data structure enclosing each step
- Data structures
- Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes [Girard, Guernic]

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets
- Number of intervals
- The data structure enclosing each step
- Data structures
- Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes [Girard, Guernic]
- Varying time step algorithms

One-step successor for linear systems

- Complexity of further verification
- Intersection computation and emptiness checking
- Size and shape of the sets
- Number of intervals
- The data structure enclosing each step
- Data structures
- Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes [Girard, Guernic]
- Varying time step algorithms
- Approximate flow computation [P,Viswanathan],SpaceEx[Frehse et al.]

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step

What about non-linear systems?

$$
\begin{gathered}
\dot{x}=f(x) \\
x \in X_{0} \subseteq \mathbb{R}^{n}
\end{gathered}
$$

What about non-linear systems?

$$
\begin{gathered}
\dot{x}=f(x) \\
x \in X_{0} \subseteq \mathbb{R}^{n}
\end{gathered}
$$

Closed form of the solutions do not exist in general!

What about non-linear systems?

$$
\begin{gathered}
\dot{x}=f(x) \\
x \in X_{0} \subseteq \mathbb{R}^{n}
\end{gathered}
$$

Closed form of the solutions do not exist in general!

- Hybridization [Puri, Borkar, Varaiya], [Asarin,Dang,Girard]
- Finite partition of the state-space.
- Approximate dynamics using the right hand side of the differential equation.

Hybridization - Rectangular approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Hybridization - Rectangular approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Hybridization - Rectangular approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Find a rectangular approximation of $f(x)$ in each cell

Hybridization - Rectangular approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Find a rectangular approximation of $f(x)$ in each cell

Hybridization - Rectangular approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Find a rectangular approximation of $f(x)$ in each cell

$$
\begin{gathered}
M a x i m i z e f_{1}\left(x_{1}, x_{2}\right) \\
a \leq x_{1} \leq b \\
c \leq x_{2} \leq d
\end{gathered}
$$

Hybridization - Linear Approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Hybridization - Linear Approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Hybridization - Linear Approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Find a linear function which interpolates $f(x)$ at the vertices

Hybridization - Linear Approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Find a linear function which interpolates $f(x)$ at the vertices

Hybridization - Linear Approximation

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Find a linear function which interpolates $f(x)$ at the vertices

Bounded error approximation in a finite time interval by choosing small enough cells, for Lipschitz continuous functions

What about approximations for infinite time?

What about approximations for infinite time?

- Finite time
- Bounded error approximation
- Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

- Finite time
- Bounded error approximation
- Construct finer abstraction by reducing the error bound
- Infinite time systems

What about approximations for infinite time?

- Finite time
- Bounded error approximation
- Construct finer abstraction by reducing the error bound
- Infinite time systems
- Hybridization

What about approximations for infinite time?

- Finite time
- Bounded error approximation
- Construct finer abstraction by reducing the error bound
- Infinite time systems
- Hybridization
- Predicate Abstraction [Alur et al], [Tiwari]

What about approximations for infinite time?

- Finite time
- Bounded error approximation
- Construct finer abstraction by reducing the error bound
- Infinite time systems
- Hybridization
- Predicate Abstraction [Alur et al], [Tiwari]
- In general, no bound on the error

What about approximations for infinite time?

- Finite time
- Bounded error approximation
- Construct finer abstraction by reducing the error bound
- Infinite time systems
- Hybridization
- Predicate Abstraction [Alur et al], [Tiwari]
- In general, no bound on the error
- Refine based on a counter-example

Abstraction

For every trajectory of the robot, there is a corresponding path in the abstract graph

Abstraction

Abstraction

Abstraction

Right abstractions hard to find!

Refinement

Refine the abstraction

Counter-Example Guided Abstraction Refinement

Related Work

- Software Verification [Kurshan et al. 93], [Clarke et al. 00], [Ball et al. 02]
- SLAM, BLAST
- Discrete CEGAR for hybrid systems [Alur et al. 03], [Clarke et al. 03]
- Hybrid CEGAR for hybrid systems [P.,Duggirala,Mitra,Viswanathan], [Dierks, Kupferschmid, Larsen])

Summary of safety verification

Overview of stability verification

Stability

Small changes to the initial state of the system result in small

 changes to the behavior of the system- The controlled behavior of the car depends gracefully on small variations to its starting orientation

Stability in a pendulum

Stability in a pendulum

Stability in a pendulum

Stability in a pendulum

Stable Equilibrium

Stability in a pendulum

Stable Equilibrium
Unstable Equilibrium

Lyapunov stability

Lyapunov stability

Lyapunov stability

Lyapunov stability

Lyapunov stability

$\forall \epsilon>0 \exists \delta>0\left[\left(\sigma(0) \in B_{\delta}(0)\right) \Rightarrow \forall t\left(\sigma(t) \in B_{\epsilon}(0)\right)\right]$

Lyapunov stability

"Continuity of the transition relation at the origin"

Asymptotic stability

"Lyapunov stability + Convergence"

$$
\begin{gathered}
\exists \delta>0\left[\left(\sigma(0) \in B_{\delta}(0)\right) \Rightarrow \operatorname{Converge}(\sigma, 0)\right] \\
C o n v e r g e(\sigma, 0) \equiv \forall \epsilon>0, \exists T \geq 0, \sigma(t) \in B_{\epsilon}(0), \forall t \geq T
\end{gathered}
$$

Linear dynamical systems

$$
\begin{gathered}
\dot{x}(t)=a x(t) \\
x(t)=e^{a t} x(0)
\end{gathered}
$$

Linear dynamical systems

$$
\begin{gathered}
\dot{x}(t)=a x(t) \\
x(t)=e^{a t} x(0)
\end{gathered}
$$

If a is negative, $x(t)$ converges to 0

Linear dynamical systems

$$
\begin{gathered}
\dot{x}(t)=a x(t) \\
x(t)=e^{a t} x(0)
\end{gathered}
$$

If a is negative, $x(t)$ converges to 0
If a is positive, $x(t)$ diverges

Linear dynamical systems

$$
\begin{gathered}
\dot{x}(t)=a x(t) \\
x(t)=e^{a t} x(0)
\end{gathered}
$$

If a is negative, $x(t)$ converges to 0
If a is positive, $x(t)$ diverges
If a is $0, x(t)$ is always $x(0)$

Linear dynamical systems

$$
\begin{gathered}
\dot{x}(t)=A x(t) \\
x(t)=e^{A t} x(0)
\end{gathered}
$$

Linear dynamical systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t) \\
& x(t)=e^{A t} x(0)
\end{aligned} \quad\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Linear dynamical systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t) \\
& x(t)=e^{A t} x(0)
\end{aligned} \quad\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Eigen value: λ such that there exists $x \neq 0$ with $A x=\lambda x$

Linear dynamical systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t) \\
& x(t)=e^{A t} x(0)
\end{aligned} \quad\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Eigen value: λ such that there exists $x \neq 0$ with $A x=\lambda x$

The linear system is stable if
all the eigen values of A have negative real parts

Linear dynamical systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t) \\
& x(t)=e^{A t} x(0)
\end{aligned} \quad\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Eigen value: λ such that there exists $x \neq 0$ with $A x=\lambda x$

The linear system is stable if all the eigen values of A have negative real parts

The linear system is unstable if
A has at least one eigen value with positive real parts

Non-linear systems

Non-linear systems

Lyapunov's first method - Linearization

Non-linear systems

Lyapunov’s first method - Linearization

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0
\end{array}
$$

Non-linear systems

Lyapunov’s first method - Linearization

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0
\end{array}
$$

Linearization $\quad \dot{x}=A x$

Non-linear systems

Lyapunov’s first method - Linearization

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0
\end{array}
$$

Linearization $\quad \dot{x}=A x$
A is the Jacobian of F evaluated at $0: A[i, j]=\frac{\partial F}{\partial x_{i} \partial x_{j}}(0)$

Non-linear systems

Lyapunov’s first method - Linearization

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0
\end{array}
$$

Linearization $\quad \dot{x}=A x$
A is the Jacobian of F evaluated at $0: A[i, j]=\frac{\partial F}{\partial x_{i} \partial x_{j}}(0)$

$$
\begin{gathered}
f(x)=x^{2}+x \\
A=(2 x+1)(0)=1
\end{gathered}
$$

Non-linear systems

Lyapunov’s first method - Linearization

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0
\end{array}
$$

Linearization $\quad \dot{x}=A x$
A is the Jacobian of F evaluated at $0: A[i, j]=\frac{\partial F}{\partial x_{i} \partial x_{j}}(0)$

$$
\begin{array}{cc}
f(x)=x^{2}+x & f(x)=x^{2}-x \\
A=(2 x+1)(0)=1 & \mathrm{~A}=(2 \mathrm{x}-1)(0)=-1
\end{array}
$$

Non-linear systems

Lyapunov's first method - Linearization

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0
\end{array}
$$

Linearization $\quad \dot{x}=A x$
A is the Jacobian of F evaluated at $0: A[i, j]=\frac{\partial F}{\partial x_{i} \partial x_{j}}(0)$

$$
\begin{array}{cc}
f(x)=x^{2}+x & f(x)=x^{2}-x \\
A=(2 x+1)(0)=1 & \mathrm{~A}=(2 \mathrm{x}-1)(0)=-1
\end{array}
$$

If A has is hyperbolic (all eigen values have non-zero real part), then stability of the original system is equivalent to the stability of the linearization.

Linear Switched Systems

Linear Switched Systems

Linear Switched Systems

Linear Switched Systems

Eigen value analysis doesn't extend to mixed discrete continuous systems

Lyapunov's Second Method

System $\quad \dot{x}=F(x)$
Equilibrium $\quad F(0)=0$
Solution $\quad \varphi(x, t)$

Lyapunov's Second Method

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0 \\
\text { Solution } & \varphi(x, t)
\end{array}
$$

If there exists a Lyapunov function for the system,

Lyapunov's Second Method

$$
\begin{array}{ll}
\text { System } & \dot{x}=F(x) \\
\text { Equilibrium } & F(0)=0 \\
\text { Solution } & \varphi(x, t)
\end{array}
$$

If there exists a Lyapunov function for the system, then it is Lyapunov stable.

Lyapunov function: Illustration

Lyapunov function: Illustration

Lyapunov function: Illustration

Lyapunov function: Illustration

Lyapunov function: Illustration

Lyapunov function

Lyapunov function

Continuously differentiable

$$
V: \mathbb{R}^{n} \rightarrow \mathbb{R}+
$$

Lyapunov function

Continuously differentiable
$V: \mathbb{R}^{n} \rightarrow \mathbb{R}+$

Positive Definite
$V(x)=0$ if and only if $x=0$
$V(x) \geq 0$ for all x

Lyapunov function

Continuously differentiable
$V: \mathbb{R}^{n} \rightarrow \mathbb{R}+$

Positive Definite
$V(x)=0$ if and only if $x=0$
$V(x) \geq 0$ for all x

Value along a trajectory decreases
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)$ is negative definite
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(X)=0$ if and only if $x=0$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

$V(x) \geq 0$ for all x
$V(x)=0$ if and only if $x=0$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

$V(x) \geq 0$ for all x
$V(x)=0$ if and only if $x=0$
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)=2 x \cdot(-x)$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

$V(x) \geq 0$ for all x
$V(x)=0$ if and only if $x=0$
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)=2 x \cdot(-x)$
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(x)=0$ if and only if $x=0$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

- A quadratic Lyapunov function exists for every stable linear system
$V(x) \geq 0$ for all x
$V(x)=0$ if and only if $x=0$
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)=2 x \cdot(-x)$
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(x)=0$ if and only if $x=0$

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

$V(x) \geq 0$ for all x
$V(x)=0$ if and only if $x=0$
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)=2 x \cdot(-x)$
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(x)=0$ if and only if $x=0$

- A quadratic Lyapunov function exists for every stable linear system
- It can be computed by solving a linear matrix inequality

Lyapunov function: Example

System $\quad \dot{x}=-x$

Candidate Lyapunov Function

$$
V(x)=x^{2}
$$

$V(x) \geq 0$ for all x
$V(x)=0$ if and only if $x=0$
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)=2 x \cdot(-x)$
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(x)=0$ if and only if $x=0$

- A quadratic Lyapunov function exists for every stable linear system
- It can be computed by solving a linear matrix inequality
- Such complete results do not exist for non-linear systems or hybrid systems (even in the linear case)

Lyapunov functions for hybrid systems

Lyapunov functions for hybrid systems

- Common Lyapunov function - a function which is a Lyapunov function for each mode of the system

Lyapunov functions for hybrid systems

- Common Lyapunov function - a function which is a Lyapunov function for each mode of the system
- Multiple Lyapunov function - a function for each mode along with certain conditions that need to be satisfied at the switching

Lyapunov functions for hybrid systems

- Common Lyapunov function - a function which is a Lyapunov function for each mode of the system
- Multiple Lyapunov function - a function for each mode along with certain conditions that need to be satisfied at the switching
- Reference: Switching in Systems and Control - Daniel Liberzon

Lyapunov function: Computation

Continuously differentiable
$V: \mathbb{R}^{n} \rightarrow \mathbb{R}+$

Positive Definite
$V(x)=0$ if and only if $x=0$
$V(x) \geq 0$ for all x

Value along a trajectory decreases
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)$ is negative definite
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(X)=0$ if and only if $x=0$

Lyapunov function: Computation

Continuously differentiable

Positive Definite
$V(x)=0$ if and only if $x=0$
$V(x) \geq 0$ for all x

Value along a trajectory decreases
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)$ is negative definite
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(X)=0$ if and only if $x=0$

Lyapunov function: Computation

Continuously differentiable

Positive Definite
$V(x)=0$ if and only if $x=0$
$V(x) \geq 0$ for all x

Value along a trajectory decreases
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)$ is negative definite
$\dot{V}(x) \leq 0$ for all x
$\dot{V}(X)=0$ if and only if $x=0$

Lyapunov function: Computation

Continuously differentiable

Polynomial Template

$V: \mathbb{R}^{n} \rightarrow \mathbb{R}+$

Positive Definite
$V(x)=0$ if and only if $x=0$
$V(x) \geq 0$ for all x

Check if there exist coefficients for which the polynomial is a sum-of-squares (SOS)

Value along a trajectory decreases
$\dot{V}(x)=\frac{\partial V}{\partial x} F(x)$ is negative definite
$\dot{V}(x) \leq 0$ for all x

Express again as a sum-of-squares constraint
$\dot{V}(X)=0$ if and only if $x=0$

Abstraction refinement for stability

Abstraction refinement for stability

- An abstraction refinement framework for a systematic proof search

Abstraction refinement for stability

- An abstraction refinement framework for a systematic proof search
- Notions of abstraction not well-studied

Abstraction refinement for stability

- An abstraction refinement framework for a systematic proof search
- Notions of abstraction not well-studied
- Do the discrete abstraction techniques for safety work? No!

Abstraction refinement for stability

- An abstraction refinement framework for a systematic proof search
- Notions of abstraction not well-studied
- Do the discrete abstraction techniques for safety work? No!
- Modified predicate abstraction

Piecewise Constant Derivative System

Piecewise Constant Derivative System

Piecewise Constant Derivative System

Lyapunov stable, but not asymptotically stable

Piecewise Constant Derivative System

Piecewise Constant Derivative System

Piecewise Constant Derivative System

Lyapunov stable and asymptotically stable

Piecewise Constant Derivative System

Piecewise Constant Derivative System

Piecewise Constant Derivative System

Neither Lyapunov stable nor asymptotically stable

Stability Analysis: Graph Construction

Capture information about distance to the origin along the executions

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

Stability Analysis: Weight computation

$$
w(e)=\frac{\left|d_{2}\right|}{\left|d_{1}\right|}
$$

Need to capture information about distance to the origin along the executions

Weight computation

$$
w(e)=\frac{\left|d_{2}\right|}{\left|d_{1}\right|}
$$

Weight computation

Stability Analysis: Weighted graph

Stability Analysis: Weighted graph

Stability Analysis: Weighted graph

Stability Analysis: Weighted graph

Stability Analysis: Weighted graph

$$
\begin{aligned}
& \sigma=\sigma\left(p_{i_{1}} p_{i_{2}}\right) \sigma\left(p_{i_{2}} p_{i_{3}}\right) \cdots \sigma\left(p_{i_{n-1}} p_{i_{n}}\right) \\
& w(\sigma)=\frac{d(\sigma(T))}{d(\sigma(0))}=w\left(e_{i_{1}, i_{2}}\right) w\left(e_{i_{2}, i_{3}}\right) \cdots w\left(e_{i_{n-1}, i_{n}}\right)
\end{aligned}
$$

Stability Analysis: Example 1

Lyapunov stable, but not asymptotically stable

Stability Analysis: Example 1

Lyapunov stable, but not asymptotically stable

Stability Analysis: Example 2

Lyapunov stable and asymptotically stable

Stability Analysis: Example 2

Lyapunov stable and asymptotically stable

Stability Analysis: Example 3

Neither Lyapunov stable nor asymptotically stable

Stability Analysis: Example 3

Neither Lyapunov stable nor asymptotically stable

Stability Analysis: PCD

Theorem: (Lyapunov stability)
A Piecewise Constant Derivative System is Lyapunov stable if
the weighted graph does not contain any cycles with the product of weights > 1

Stability Analysis: PCD

Theorem: (Lyapunov stability)

A Piecewise Constant Derivative System is Lyapunov stable if
the weighted graph does not contain any cycles with the product of weights > 1

Theorem: (Asymptotic stability)
A Piecewise Constant Derivative System is asymptotically stable if
the weighted graph does not contain any cycles with the product of weights $>=1$

Stability Analysis Tools

Stability Analysis Tools

- SOSTOOLS - Sum-of-squares programming

Stability Analysis Tools

- SOSTOOLS - Sum-of-squares programming
- LMI solvers - CVX

Stability Analysis Tools

- SOSTOOLS - Sum-of-squares programming
- LMI solvers - CVX
- Stability Analysis: Stabhyli

Summary

- Hybrid Systems verification is challenging
- Undecidable for simple subclasses
- Standard techniques from the purely discrete and continuous worlds do not extend in a straightforward manner
- Model-checking \& Deductive verification
- Approximation techniques
- Safety - Predicate abstraction \& CEGAR, hybridization
- Stability - Linearization, Predicate abstraction

Some research directions

- Scalability
- Efficient data structures
- Approximation methods
- Compositional analysis
- Applications
- Exploiting structures
- Bridging the gap between model and implementation

