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February 6, 2010: 

Toyota recalls 133,000 Prius vehicles 
in the US and 52, 000 in Europe to fix 
problems with its anti-lock brake 
software

Recalls due to Software Bugs

1990-2000: 

200,000 devices affected due to safety 
recalls of pacemakers and implantable 
cardioverter defibrillators due to 
firmware problems.
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Grand Challenge: Development of high-
confidence Cyber-Physical Systems
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• Model the plant

• Synthesize the controller

• Simulate/Verify

• Implement

Model-based Design

Elimination of errors early in the design, resulting in more 
robust control system, fewer iterations in the development 
cycle and reduced development time and cost.

Plant
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• Automated synthesis: Correct-by-construction

• Automated methods for detecting presence/absence of errors

• Simulation/Testing

• Verification

Reliable design

Plant

Controller
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Verification of Cyber-Physical Systems
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Hybrid Systems

Systems consisting of mixed discrete-continuous behaviors
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Highlights

• Modeling and specification

• Overview of safety verification 

• Overview of stability verification

• Complexity and computability

• Approximation techniques

• Tools
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Models

• Hybrid Automata [Henzinger et al.]

• Continuous dynamics: Differential equations

• Discrete dynamics: Finite state automata

• Extensions of process algebra and petri-nets, 
differential dynamic logic
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0 1--1--2 2

Guard

Go Ahead Turn Right

Out of 
the 

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x� = x

x� = x

x� = x

Reset

Flow

Invariant

Autonomous Car Controller
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Safety 

• Every execution of the system is error free

• The car does not go out of the road

Properties

Stability 

• Small perturbations in the initial state or input lead to only 
small perturbations in the eventual behavior of the system

• Small perturbations in the initial orientation of the car will 
still keep it inside the road
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Overview of safety verification
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ẏ = 2 ẏ = −2
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ẏ = 2 ẏ = −2
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ẏ = 2 ẏ = −2
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• One-step successor :

• states reached by time evolution 
or discrete transition

Safety analysis - Reach set computation

0, 0 2, 0

0,1

• first order logic formula with addition 

• polyhedral set

SuccC(X0, x) := ∃t, x0 ∈ X0,

∀0 ≤ t� ≤ t, x0 + at� ∈ Inv

x = x0 + at,

SuccD(X0, x) := ∃x0 ∈ X0,

x0 ∈ Guard, (x0, x) ∈ Reset
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Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

Safety analysis - Reach set computation
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• Iterate till termination - need a check for termination - equivalence 
between sets

Reachi+1(X0) = Reachi(X0) ∪ SuccD(SuccC(Reach
i(X0)))

Reach0(X0) = X0

•  Terminates for some subclasses - Timed automata [Lecture on Friday - 
David & Larsen]

• Reach set up to a given bound on the number of discrete transitions can be 
computed 

0, 0 2, 0

0,1

Safety analysis - Reach set computation
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Polyhedral Linear Systems

• Generalized to polyhedral hybrid systems 

• Invariants, Guards - linear constraints 

• Resets - linear map 

• Dynamics - linear constraint over dotted variables

•  Reachability analysis tools: HYTECH, PHAVER
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Safety verification primitives

• Effective representation of one step continuous successor

• Intersection with guards and resets

• Emptiness checking after intersection with the unsafe set

• Sets represents by polyhedral sets or formulas over first-order logic

• Emptiness checking reduces to satisfiability problem of the logic

•   Satisfiability of first order logic with addition and 
multiplication is decidable.
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x(t) = eatx(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Linear Dynamical System
˙̄x(t) = Ax̄(t), x̄0 ∈ X ⊆ Rn

Closed form solution
x̄(t) = eAtx̄(0)

eB = 1 +B +
B2

2!
+

B3

3!
+ · · ·ey = 1 + y +

y2

2!
+

y3

3!
+ · · ·
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One-step successor for linear systems

• Satisfiability is not known for first-order logic with exponentiation.
• Approximation of the successor states
• Assumption: Matrix exponential can be computed with arbitrary precision

1. Divide into 
time steps

∆

∆

2. Evaluate the function at        
time steps to obtain a piecewise 

linear approximation

∆

3. Compute a bound on the error 
of approximation and expand

4. Enclose in a data-
structure
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• Intersection computation and emptiness checking

• Size and shape of the sets
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• The data structure enclosing each step

• Data structures

• Polyhedra [Dang,Maler], [Chutinan, Krogh], Ellipsoids [Kurzhanski, 
Varaiya], Zonotopes [Girard, Guernic]

• Varying time step algorithms

• Approximate flow computation [P,Viswanathan],SpaceEx[Frehse et al.]
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One-step successor for linear systems

Dynamic time-step computation:
Given an error bound find the length of the next time step
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What about non-linear systems?

ẋ = f(x)

x ∈ X0 ⊆ Rn

Closed form of the solutions do not exist in general!

• Hybridization [Puri, Borkar, Varaiya], [Asarin,Dang,Girard] 

• Finite partition of the state-space.

• Approximate dynamics using the right hand side of the 
differential equation.
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Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
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Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)
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(a, c)

(b, d)

Find a rectangular approximation 
of           in each cellf(x)
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Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a rectangular approximation 
of           in each cellf(x)

ẋ1 ∈ [l1, u1]

ẋ2 ∈ [l2, u2]
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Hybridization - Rectangular approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Maximizef1(x1, x2)

a ≤ x1 ≤ b

c ≤ x2 ≤ d

(a, c)

(b, d)

Find a rectangular approximation 
of           in each cellf(x)

ẋ1 ∈ [l1, u1]

ẋ2 ∈ [l2, u2]
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Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
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Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)
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Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a linear function which
interpolates f(x) at the vertices
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Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

(a, c)

(b, d)

Find a linear function which
interpolates f(x) at the vertices
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Hybridization - Linear Approximation

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Bounded error approximation in 
a finite time interval by choosing 
small enough cells, for Lipschitz 
continuous functions

(a, c)

(b, d)

Find a linear function which
interpolates f(x) at the vertices
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What about approximations for infinite time?
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• Finite time

• Bounded error approximation 

• Construct finer abstraction by reducing the error bound
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What about approximations for infinite time?

• Infinite time systems 
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• Hybridization
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• Finite time

• Bounded error approximation 

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems 

• Hybridization

•  Predicate Abstraction  [Alur et al], [Tiwari]
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• Finite time

• Bounded error approximation 

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems 

• Hybridization

•  Predicate Abstraction  [Alur et al], [Tiwari]

• In general, no bound on the error
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• Finite time

• Bounded error approximation 

• Construct finer abstraction by reducing the error bound

What about approximations for infinite time?

• Infinite time systems 

• Hybridization

•  Predicate Abstraction  [Alur et al], [Tiwari]

• In general, no bound on the error

• Refine based on a counter-example

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

Abstraction

Wednesday, July 17, 2013



21 3

4 5 6

7 8 9

2 31

4 5 6

7 8 9

For every trajectory of the robot, there is a 
corresponding path in the abstract graph

Abstraction
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Right abstractions hard to find!

Abstraction
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Refine the abstraction

Refinement
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Refine the abstraction
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Abstract Model-Check

ValidateRefine

Counter-Example Guided Abstraction 
Refinement
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ValidateRefine
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Concrete System satisfies 
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No
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System
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System

Property

Abstract 
Counterexample

Yes
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Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies 
the property!!

No

Concrete 
System

Abstract 
System

Property

Abstract 
Counterexample

Yes

Concrete counterexample!

No

Analysis

Counter-Example Guided Abstraction 
Refinement
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Abstract Model-Check

ValidateRefine

Yes

Concrete System satisfies 
the property!!

No

Concrete 
System

Abstract 
System

Property

Abstract 
Counterexample

Yes

Concrete counterexample!

No

Abstraction 
Relation

Analysis

Counter-Example Guided Abstraction 
Refinement
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Related Work

• Software Verification [Kurshan et al. 93], [Clarke et al. 00], [Ball et al. 02]

• SLAM, BLAST

• Discrete CEGAR for hybrid systems [Alur et al. 03], [Clarke et al. 03]

• Hybrid CEGAR for hybrid systems [P.,Duggirala,Mitra,Viswanathan], 
[Dierks, Kupferschmid, Larsen])
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ẋ ∈ [a, b]

Summary of safety verification

Exponential

Undecidable

ẋ = Ax
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R
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N
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 (F
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*)

ẋ = f(x)

One step successor
computation hard
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Overview of stability verification

Wednesday, July 17, 2013



Stability

Small changes to the initial state of the system result in small 
changes to the behavior of the system 

• The controlled behavior of the car depends gracefully on small 
variations to its starting orientation
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Stability in a pendulum
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Stability in a pendulum

Stable Equilibrium
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Stability in a pendulum

Stable Equilibrium
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Stability in a pendulum

Stable Equilibrium
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Stability in a pendulum

Stable Equilibrium Unstable Equilibrium
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Lyapunov stability

0
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Lyapunov stability
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�

Lyapunov stability

δ

0

∀� > 0 ∃δ > 0 [(σ(0) ∈ Bδ(0)) ⇒ ∀t(σ(t) ∈ B�(0))]

Wednesday, July 17, 2013



�

Lyapunov stability

δ

0

“Continuity of the transition relation at the origin”

∀� > 0 ∃δ > 0 [(σ(0) ∈ Bδ(0)) ⇒ ∀t(σ(t) ∈ B�(0))]
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Asymptotic stability

0

“Lyapunov stability + Convergence”
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Asymptotic stability
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“Lyapunov stability + Convergence”
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δ

Asymptotic stability

0

“Lyapunov stability + Convergence”
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δ

Asymptotic stability

0

“Lyapunov stability + Convergence”

Converge(σ, 0) ≡ ∀� > 0, ∃T ≥ 0,σ(t) ∈ B�(0), ∀t ≥ T

∃δ > 0 [(σ(0) ∈ Bδ(0)) ⇒ Converge(σ, 0)]
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Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)
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Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

If a is negative, x(t) converges to 0
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Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

If a is negative, x(t) converges to 0

If a is positive, x(t) diverges
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Linear dynamical systems

ẋ(t) = ax(t)

x(t) = eatx(0)

If a is negative, x(t) converges to 0

If a is positive, x(t) diverges

If a is 0, x(t) is always x(0)
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Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)
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Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)
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Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

Eigen value: λ such that there exists x �= 0 with Ax = λx
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Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

The linear system is stable if 

all the eigen values of A have negative real parts

Eigen value: λ such that there exists x �= 0 with Ax = λx
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Linear dynamical systems

ẋ(t) = Ax(t)

x(t) = eAtx(0)

The linear system is stable if 

all the eigen values of A have negative real parts

The linear system is unstable if 

A has at least one eigen value with positive real parts

Eigen value: λ such that there exists x �= 0 with Ax = λx




1 0 0
0 2 0
0 0 3








x1

x2

x3








ẋ1
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Non-linear systems
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Non-linear systems

Lyapunov’s first method - Linearization
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Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Lyapunov’s first method - Linearization
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Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

Lyapunov’s first method - Linearization
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Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

Lyapunov’s first method - Linearization
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Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

f(x) = x2 + x

A = (2x+ 1)(0) = 1

Lyapunov’s first method - Linearization
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Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

f(x) = x2 + x

A = (2x+ 1)(0) = 1

Lyapunov’s first method - Linearization

f(x) = x2 − x

A = (2x - 1)(0) = -1
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Non-linear systems

ẋ = F (x)

F (0) = 0

System

Equilibrium

If A has is hyperbolic (all eigen values have non-zero real part), then stability 
of the original system is equivalent to the stability of the linearization.

Linearization ẋ = Ax

A is the Jacobian of F evaluated at 0: A[i, j] = ∂F
∂xi∂xj

(0)

f(x) = x2 + x

A = (2x+ 1)(0) = 1

Lyapunov’s first method - Linearization

f(x) = x2 − x

A = (2x - 1)(0) = -1
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Linear Switched Systems
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Linear Switched Systems
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Linear Switched Systems
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Eigen value analysis doesn’t extend to mixed discrete continuous systems

Linear Switched Systems
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Lyapunov’s Second Method

ẋ = F (x)

F (0) = 0

ϕ(x, t)

System

Equilibrium

Solution
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Lyapunov’s Second Method

ẋ = F (x)

F (0) = 0

ϕ(x, t)

System

Equilibrium

Solution

If there exists a Lyapunov function for the system, 
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Lyapunov’s Second Method

ẋ = F (x)

F (0) = 0

ϕ(x, t)

System

Equilibrium

Solution

If there exists a Lyapunov function for the system, 

then it is Lyapunov stable.
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Lyapunov function: Illustration
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Lyapunov function: Illustration

xy

V
Continuously 
differentiable
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Lyapunov function: Illustration

xy

V
Continuously 
differentiable

Positive 
Definite
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Lyapunov function: Illustration

xy

V
Continuously 
differentiable

Positive 
Definite

Value decreases 
along any trajectory
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Lyapunov function 
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Lyapunov function 

V : Rn → R+

Continuously differentiable
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Lyapunov function 

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable
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Lyapunov function 

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0
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Lyapunov function: Example 

ẋ = −xSystem
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Lyapunov function: Example 

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2
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ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0
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Lyapunov function: Example 

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)
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V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0
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ẋ = −xSystem

Candidate Lyapunov Function
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V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0
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∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

• A quadratic Lyapunov 
function exists for every 
stable linear system
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Lyapunov function: Example 

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

• A quadratic Lyapunov 
function exists for every 
stable linear system

• It can be computed by 
solving a linear matrix 
inequality
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Lyapunov function: Example 

ẋ = −xSystem

Candidate Lyapunov Function

V (x) = x2

V (x) ≥ 0 for all x

V (x) = 0 if and only if x = 0

V̇ (x) = ∂V
∂x F (x) = 2x · (−x)

V̇ (x) ≤ 0 for all x

V̇ (x) = 0 if and only if x = 0

• A quadratic Lyapunov 
function exists for every 
stable linear system

• It can be computed by 
solving a linear matrix 
inequality

• Such complete results do not 
exist for non-linear systems 
or hybrid systems (even in 
the linear case)
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Lyapunov functions for hybrid systems
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Lyapunov functions for hybrid systems

• Common Lyapunov function - a function which is a 
Lyapunov function for each mode of the system
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Lyapunov functions for hybrid systems

• Common Lyapunov function - a function which is a 
Lyapunov function for each mode of the system

• Multiple Lyapunov function - a function for each 
mode along with certain conditions that need to be 
satisfied at the switching
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Lyapunov functions for hybrid systems

• Common Lyapunov function - a function which is a 
Lyapunov function for each mode of the system

• Multiple Lyapunov function - a function for each 
mode along with certain conditions that need to be 
satisfied at the switching

• Reference: Switching in Systems and Control - Daniel 
Liberzon
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Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0
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Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable Polynomial 
Template

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0
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Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable Polynomial 
Template

Check if there exist coefficients 
for which the polynomial is a 

sum-of-squares (SOS)

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0
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Lyapunov function: Computation

V (x) = 0 if and only if x = 0

V (x) ≥ 0 for all x

Positive Definite

V : Rn → R+

Continuously differentiable Polynomial 
Template

Check if there exist coefficients 
for which the polynomial is a 

sum-of-squares (SOS)

Express again as a sum-
of-squares constraint

Value along a trajectory decreases

V̇ (x) = ∂V
∂x F (x) is negative definite

V̇ (x) ≤ 0 for all x

V̇ (X) = 0 if and only if x = 0

Wednesday, July 17, 2013



Abstraction refinement for stability

Wednesday, July 17, 2013



Abstraction refinement for stability

• An abstraction refinement framework for a 
systematic proof search
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Abstraction refinement for stability

• An abstraction refinement framework for a 
systematic proof search
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Abstraction refinement for stability

• An abstraction refinement framework for a 
systematic proof search

• Notions of abstraction not well-studied

• Do the discrete abstraction techniques for safety 
work? No!

• Modified predicate abstraction
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Neither Lyapunov stable nor asymptotically stable

Piecewise Constant Derivative System
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Stability Analysis: Graph Construction
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Stability Analysis: Graph Construction
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Capture information about distance to the origin along the executions
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Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions
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Stability Analysis: Weight computation
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Stability Analysis: Weight computation

Need to capture information about distance to the origin along the executions

d1
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w(e) =
|d2|
|d1|
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Weight computation
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Stability Analysis: Weighted graph
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Stability Analysis: Weighted graph
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Stability Analysis: Example 1
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Stability Analysis: Example 2
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Stability Analysis: Example 3
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Stability Analysis: PCD

Theorem:  (Lyapunov stability)

A Piecewise Constant Derivative System is Lyapunov stable 
if

the weighted graph does not contain any cycles with the product 
of weights > 1
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Stability Analysis: PCD

Theorem:  (Lyapunov stability)

A Piecewise Constant Derivative System is Lyapunov stable 
if

the weighted graph does not contain any cycles with the product 
of weights > 1

Theorem:  (Asymptotic stability)

A Piecewise Constant Derivative System is asymptotically stable 
if

the weighted graph does not contain any cycles with the product 
of weights >= 1
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SummaryStability Analysis Tools
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SummaryStability Analysis Tools

• SOSTOOLS - Sum-of-squares programming

• LMI solvers - CVX

• Stability Analysis: Stabhyli
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SummarySummary

• Hybrid Systems verification is challenging 

• Undecidable for simple subclasses

• Standard techniques from the purely discrete and 
continuous worlds do not extend in a straightforward 
manner

• Model-checking & Deductive verification

• Approximation techniques

• Safety - Predicate abstraction & CEGAR, hybridization

• Stability - Linearization, Predicate abstraction
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Some research directions

• Scalability

• Efficient data structures

• Approximation methods

• Compositional analysis

• Applications

• Exploiting structures

• Bridging the gap between model and implementation
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