Distributed Control of Adaptive Cloud Services

Doctoral student: 
Date de soutenance: 
Wednesday, November 18, 2015
S. Bouchenak
B. Robu

The amount of raw data produced by everything from our mobile phones, tablets, computers to our smart watches brings novel challenges in data storage and analysis. Many solutions have arisen in the industry to treat these large quantities of raw data, the most popular being the MapReduce framework. However, while the deployment complexity of such computing systems is steadily increasing, continuous availability and fast response times are still the expected norm. Furthermore, with the advent of virtualization and cloud solutions, the environments where these systems need to run is becoming more and more dynamic. Therefore ensuring performance and dependability constraints of a MapReduce service still poses significant challenges. In this thesis we address this problematic of guaranteeing the performance and availability of MapReduce based cloud services, taking an approach based on control theory. We develop the first dynamic models of a MapReduce service running a concurrent workload. Furthermore, we develop several control laws to ensure different quality of service objectives. First, classical feedback and feedforward controllers are developed to guarantee service performance. To further adapt our controllers to the cloud, such as minimizing the number of reconfigurations and costs, a novel event-based control architecture is introduced for performance management. Finally we develop the optimal control architecture MR-Ctrl, which is the first solution to provide guarantees in terms of both performance and dependability for MapReduce systems, meanwhile keeping cost at a minimum. All the modeling and control approaches are evaluated both in simulation and experimentally using MRBS, a comprehensive benchmark suite for evaluating the performance and dependability of MapReduce systems. Validation experiments were run in a real 60 node Hadoop MapReduce cluster, running a data intensive Business Intelligence workload. Our experiments show that the proposed techniques can successfully guarantee performance and dependability constraints.